泊松过程

本文深入探讨了泊松过程,包括其两种定义、与伯努利过程的关系以及与指数过程的联系。泊松过程具有增量平稳性和独立性,且在特定条件下,泊松分布是二项分布的极限。非齐次泊松过程和复合泊松过程作为泊松过程的扩展,进一步丰富了随机过程理论。
摘要由CSDN通过智能技术生成

计数过程

如果用 N ( t ) N(t) N(t)表示到时刻 t t t为止已发生的“事件 A A A”的总数,若 N ( t ) N(t) N(t)满足下列条件:

1. N ( t ) ≥ 0 N(t)≥0 N(t)0
2. N ( t ) N(t) N(t)取正整数值
3.对任意两个时刻 t 1 &lt; t 2 t_1&lt;t_2 t1<t2, 有 N ( t 1 ) &lt; N ( t 2 ) N(t_1)&lt;N(t_2) N(t1)<N(t2)
4.对任意两个时刻 t 1 &lt; t 2 t_1&lt;t_2 t1<t2 N ( t 2 ) − N ( t 1 ) N(t_2)-N(t_1) N(t2)N(t1)等于在区间 ( t 1 , t 2 ] (t_1,t_2] (t1,t2]中发生的“事件A”的次数
则随机过程 N ( t ) , t ≥ 0 {N(t),t≥0} N(t),t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值