转载自https://www.matongxue.com/madocs/206/
- 关于泰勒公式的来源:牛顿插值的几何解释是怎么样的?
- 泰勒公式本身的理解:如何通俗地解释泰勒公式?
这个看似简单的问题,牵扯到一个我认为非常漂亮的数学结论,如果要我说什么让我体会到了数学之美,我一定会选择这个数学结论。
下面我就借着这个问题来讲解一下让我觉得非常动人的这个数学结论。
下面叙述中,我可能把泰勒公式、泰勒级数、泰勒展开这三个名字进行混用,请依据上下文自行判断(数学看多了,说话写字都会有点强迫症,希望尽量严格些)。
通过奇点来判断泰勒级数的收敛,这就是我说的那个非常漂亮的数学结论,由柯西证明的泰勒级数的收敛半径:
听起来有点拗口,而且还涉及到复平面,我们用f(x)=x^(1/3)这个函数来举例子:
上面的收敛圆意味着,在实数范围内做f(x)=x^(1/3)的话,如果在处泰勒展开展开,那么只有在内的泰勒级数才会收敛:
Created with GeoGebra
回到我们之前挖下的坑f(x)=1/(1+x^2)的奇点在哪里?
很明显时,i是奇点,因为i^2=-1 我们把奇点和展开点放到复平面上看看:
所以在实平面上函数f(x),虽然奇点不在实平面内,但是依然被奇点所影响,所以其收敛半径为:-1<x<1
我们学习的高等数学,都是在实数范围内,所以导致我很长时间认为复数只是一个表示的一个技巧,而泰勒级数收敛圆向我展示了实数切切实实是复数的一部分,哪怕你只研究实数部分的问题,仍然会被复数所影响。这是我认为它非常美丽的原因。
我们还应该认识到泰勒级数只是对原函数的近似,并且这种近似是有条件的。
其次:
但是选a=30肯定不行,因为泰勒级数第一项就要计算f(30)=30^(1/3)