使用泰勒公式进行估算时,在不同点有啥区别?

本文围绕泰勒公式展开,介绍了泰勒级数的收敛,包括收敛的定义、奇点的概念、奇点与收敛圆的关系以及复数与实数的关系,指出实数会受复数影响,泰勒级数是对原函数的有条件近似。此外,还讲解了运用泰勒级数估算的技巧,如选择合适的展开点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载自https://www.matongxue.com/madocs/206/

关于泰勒公式的问题,我写过两个答案了:

  1. 关于泰勒公式的来源:牛顿插值的几何解释是怎么样的?
  2. 泰勒公式本身的理解:如何通俗地解释泰勒公式?

关于泰勒公式,之前有一个同学问了我一个问题:

这个看似简单的问题,牵扯到一个我认为非常漂亮的数学结论,如果要我说什么让我体会到了数学之美,我一定会选择这个数学结论。

下面我就借着这个问题来讲解一下让我觉得非常动人的这个数学结论。

1 泰勒级数的收敛

1.1 什么是收敛?

泰勒公式可以把可导的函数展开为幂级数:

下面叙述中,我可能把泰勒公式、泰勒级数、泰勒展开这三个名字进行混用,请依据上下文自行判断(数学看多了,说话写字都会有点强迫症,希望尽量严格些)。

我们对f(x)=x^(1/3)进行泰勒展开:

1.2 泰勒公式的奇点

什么叫做奇点?比如对于这个函数:

不光不可导点是奇点,没有定义的点也是奇点,比如:

还有一个更奇怪的奇点:

1.3 奇点与收敛圆

通过奇点来判断泰勒级数的收敛,这就是我说的那个非常漂亮的数学结论,由柯西证明的泰勒级数的收敛半径:

听起来有点拗口,而且还涉及到复平面,我们用f(x)=x^(1/3)这个函数来举例子:

上面的收敛圆意味着,在实数范围内做f(x)=x^(1/3)的话,如果在处泰勒展开展开,那么只有在内的泰勒级数才会收敛:

可以自己动手试试,A点也是可以拖动的:

Created with GeoGebra

明白了泰勒公式的收敛半径之后,我们就可以明白:

此时回到我们最初的那个问题:

1.4 复数与实数的关系

回到我们之前挖下的坑f(x)=1/(1+x^2)的奇点在哪里?

很明显时,i是奇点,因为i^2=-1 我们把奇点和展开点放到复平面上看看:

 

所以在实平面上函数f(x),虽然奇点不在实平面内,但是依然被奇点所影响,所以其收敛半径为:-1<x<1

 

我们学习的高等数学,都是在实数范围内,所以导致我很长时间认为复数只是一个表示的一个技巧,而泰勒级数收敛圆向我展示了实数切切实实是复数的一部分,哪怕你只研究实数部分的问题,仍然会被复数所影响。这是我认为它非常美丽的原因。

我们还应该认识到泰勒级数只是对原函数的近似,并且这种近似是有条件的。

2 运用泰勒级数估算的技巧

我不喜欢技巧,不过这里仍然说一下如何合理的估算。

首先:

 

其次:

 

但是选a=30肯定不行,因为泰勒级数第一项就要计算f(30)=30^(1/3)

,咱们何必用泰勒级数进行计算?

那选a=29行不行?也不好,因为第一项要计算29^(1/3)

,这个我们也不清楚。

最好就选a=27,因为计算27^(1/3)=3

,下面一项也比较好计算。至于余项的计算这里就不说了。

泰勒公式在计算机科学中有多种实际应用场景,特别是在数值分析、机器学习等领域。下面详细介绍几种典型的应用。 ### 1. 数值分析 泰勒公式在数值分析中主要用于近似复杂的函数。通过将一个复杂函数在其某一点附近展开成多项式形式,可以简化计算过程并提高效率。例如,利用泰勒级数来逼近非线性函数,从而实现更高效的数值求解方法。 **引用[^1]**: > "《数值分析》(Burden & Faires): 这本著作的第5章专门介绍了泰勒级数在数值分析中的应用。" ### 2. 优化算法 在机器学习领域,许多优化算法依赖于泰勒级数来进行局部近似。例如,梯度下降法和牛顿法都利用了泰勒展开来找到最优解。通过泰勒展开,可以在当前点附近构建一个二次模型,并在此基础上进行迭代更新。 **引用**: > "MIT公开课'单变量微积分'(Calculus Revisited): 这门课程的视频讲解了泰勒级数的基本概念和计算技巧。" ### 3. 人工智能中的解释模型 泰勒级数还可以用来解释和理解复杂的黑盒模型。例如,Lundberg 和 Lee 提出了一种统一的方法来解释模型预测,其中利用了泰勒级数来近似模型的行为。 **引用[^2]**: > Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in neural information processing systems (pp. 4765-4774). ### 4. 图像处理与模式识别 在图像处理和模式识别任务中,泰勒级数可以帮助我们更好地理解和建模图像数据。例如,可以通过泰勒展开来近似图像的边缘特征,进而实现更精确的目标检测和分类。 ### 示例代码 为了展示如何使用泰勒级数进行函数近似,我们可以编写一段简单的 Python 代码来计算 $e^x$ 函数的泰勒级数展开。 ```python import math def taylor_series_exp(x, n): """ 计算 e^x 的泰勒级数展开 :param x: 输入值 :param n: 展开项数 :return: 泰勒级数近似结果 """ result = 0 for i in range(n): term = (x ** i) / math.factorial(i) result += term return result # 测试 x = 1.0 n = 10 approximation = taylor_series_exp(x, n) print(f"e^{x} 的泰勒级数近似结果为: {approximation}") ``` 这段代码展示了如何使用泰勒级数来近似计算 $e^x$ 函数。通过增加展开项数 `n`,可以获得更高的精度。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值