链接:http://acm.hdu.edu.cn/showproblem.php?pid=2067
题目:
小兔的棋盘
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 6096 Accepted Submission(s): 3321
Problem Description
小兔的叔叔从外面旅游回来给她带来了一个礼物,小兔高兴地跑回自己的房间,拆开一看是一个棋盘,小兔有所失望。不过没过几天发现了棋盘的好玩之处。从起点(0,0)走到终点(n,n)的最短路径数是C(2n,n),现在小兔又想如果不穿越对角线(但可接触对角线上的格点),这样的路径数有多少?小兔想了很长时间都没想出来,现在想请你帮助小兔解决这个问题,对于你来说应该不难吧!
Input
每次输入一个数n(1<=n<=35),当n等于-1时结束输入。
Output
对于每个输入数据输出路径数,具体格式看Sample。
Sample Input
1 3 12 -1
Sample Output
1 1 2 2 3 10 3 12 416024
解题思路;
找出递推公式:
f[n][n]表示从(0,0)到(n,n)的最短路径数(所有路径均在对角线下方);
f[x][y] = f[x-1][y] (x-1>=y)+ f[x][y-1](x>=y-1);
代码:
#include <cstdio>
#include <cstring>
const int MAXN = 40;
long long a[MAXN][MAXN];
int main()
{
int n, t = 1;
memset(a, 0, sizeof(a));
for(int i = 1; i < MAXN; i++)
a[0][i] = a[i][0] = 1;
for(int i = 1; i < MAXN; i++)
{
for(int j = 1; j < MAXN; j++)
{
if(i - 1 >= j)
a[i][j] += a[i-1][j];
if(i >= j - 1)
a[i][j] += a[i][j-1];
}
}
while(~scanf("%d", &n))
{
if(-1 == n) break;
printf("%d %d %I64d\n", t++, n, 2*a[n][n]);
}
return 0;
}