TensorFlow
Joe-Han
这个作者很懒,什么都没留下…
展开
-
TensorFlow概述
基本使用使用 TensorFlow, 你必须明白 TensorFlow:使用图 (graph) 来表示计算任务.在被称之为 会话 (Session) 的上下文 (context) 中执行图.使用 tensor 表示数据.通过 变量 (Variable) 维护状态.使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据.转载 2016-09-09 10:53:03 · 2090 阅读 · 0 评论 -
Tensorflow - Tutorial (7) : 利用 RNN/LSTM 进行手写数字识别
1. 常用类class tf.contrib.rnn.BasicLSTMCellBasicLSTMCell 是最简单的一个LSTM类,没有实现clipping,projection layer,peep-hole等一些LSTM的高级变种,仅作为一个基本的basicline结构存在,如果要使用这些高级变种,需用class tf.contrib.rnn.LSTMCell这个类。使用方式:lstm = r原创 2017-03-10 15:34:31 · 21590 阅读 · 0 评论 -
Tensorflow - Tutorial (8) : Variables的保存与恢复
1. 主要方法我们在训练一个模型时,常希望保存训练过程中的variables,这些variables通常指的是模型的参数。通过保存这些参数以便下次可以继续进行训练或者基于已有的参数进行测试。Tensorflow针对这一需求提供了Saver类,通过Saver类提供的相关方法可以保存和恢复训练过程中的变量,该文件称为检查点文件(checkpoints)。检查点文件是一个二进制文件主要包含从变量名到ten原创 2017-06-06 19:30:00 · 5646 阅读 · 0 评论 -
Tensorflow - Tutorial (5) : 降噪自动编码器(Denoising Autoencoder)
1. Denoising Autoencoder在神经网络模型训练阶段开始前,通过Autoencoder对模型进行预训练可确定编码器WW的初始参数值。然而,受模型复杂度、训练集数据量以及数据噪音等问题的影响,通过Autoencoder得到的初始模型往往存在过拟合的风险。关于Autoencoder的介绍请参考:自动编码器(Autoencoder)。在介绍Denoising Autoencoder(降噪原创 2016-09-22 09:40:42 · 18269 阅读 · 3 评论 -
Tensorflow - Tutorial (6) : TensorBoard 可视化工具
1. TensorBoard为了更方便 TensorFlow 程序的理解、调试与优化,TensorFlow发布了一套叫做 TensorBoard 的可视化工具。可以用 TensorBoard 来展现 TensorFlow 图像,绘制图像生成的定量指标图以及附加数据。TensorBoard可生成以下4类信息:Event: 展示训练过程中的统计数据(最值,均值等,误差)变化情况Image: 展示训练原创 2016-10-11 17:30:09 · 4469 阅读 · 0 评论 -
TensorFlow的安装与配置
TensorFlow的安装与配置原创 2016-09-08 23:58:11 · 3888 阅读 · 0 评论 -
Tensorflow - Tutorial (1) : 线性回归
Tensorflow-Tutorial (1) : 线性回归原创 2016-09-09 11:53:45 · 2080 阅读 · 0 评论 -
Tensorflow - Tutorial (2) : 利用softmax回归进行手写数字识别
Tensorflow - Tutorial (2) : 利用softmax进行手写数字识别原创 2016-09-10 15:40:40 · 7735 阅读 · 6 评论 -
Tensorflow - Tutorial (3) : 前馈神经网络(多层感知机)
前馈神经网络一个简单的3层神经网络模型例子如下,圆圈表示神经网络的输入,“+1”的圆圈被称为偏置节点。神经网络最左边的一层叫做输入层,包含3个输入单元,最右的一层叫做输出层。中间所有节点组成的一层叫做隐藏层,包含3个神经元。 前馈神经网络与反向传播算法请参考 Feedforward Neural Network手写数字识别MNIST数据集的格式与数据预处理代码input_data.py的讲解请参考原创 2016-09-17 15:57:59 · 13741 阅读 · 3 评论 -
Tensorflow - Tutorial (4) :基于CNN的手写数字识别
1. 模型结构本文只涉及利用Tensorflow实现CNN的手写数字识别,关于CNN的内容请参考:卷积神经网络(CNN) MNIST数据集的格式与数据预处理代码input_data.py的讲解请参考 :Tutorial (2)该CNN模型包含3个卷积层,2个全连接层,具体结构如下:输入层 : CNN的输入是一张图片,用28x28的矩阵表示C1层 :该层为卷积层,卷积核大小是3x3,激活函数为RE原创 2016-09-20 14:47:32 · 7643 阅读 · 2 评论 -
Tensorflow - Tutorial (9) : GAN生成图片
1. 介绍 本文利用Tensorflow实现生成式对抗网络GAN,关于GAN的详细介绍可参考:生成式对抗网络(Generative Adversarial Networks,GANs)。训练所使用的MNIST数据集包含了各种手写数字图片,图片的格式与数据预处理代码input_data.py的介绍详见:Tutorial (2)。本文在GAN中使用的生成模型GG和判别模型DD均为多层感知机。生成模原创 2018-01-08 16:35:29 · 4628 阅读 · 2 评论