图形学初识--定义摄像机类(实战)

前言

前面一些章节讲解了图形学的比较原理性的内容,这一章节咱就实战一下,封装一个简易的摄像机类,看看最基本的摄像机是如何一步步实现出来的!

正文

定义摄像机的操作方式

键盘操作

规定使用WSAD模拟摄像机的前后左右移动。即如下:

  • W按键,使得摄像机前进,也就是朝-Z轴方向移动
  • S按键,使得摄像机后退,也就是朝Z轴方向移动
  • A按键,使得摄像机向左边移动,也就是朝-X轴方向移动
  • D按键,使得摄像机向右边移动,也就是朝X轴方向移动

鼠标操作

规定按住鼠标右键:上下移动,类似点头;左右移动,类似左右摇头。类似下图的:pitch和yaw操作

在这里插入图片描述

由于咱们模拟的是射击类游戏的镜头,所以绕Z轴旋转的Roll操作,咱们并不涉及,这里不多阐述,其实原理大同小异!

定义摄像机类核心数据

最基本的核心数据如下图所示,由于是使用glm数学库表示的向量,glm::vec3表示三维向量。

在这里插入图片描述

视图矩阵回顾:

通过摄像机正向变换过程的逆变换定义,正向过程如下:

在这里插入图片描述

假设正向过程定义为 M = T ∗ R M = T * R M=TR,R表示旋转矩阵,T表示平移矩阵,则视图矩阵表示为M的逆过程,也就是: M − 1 = R − 1 ∗ T − 1 M^{-1} = R^{-1}*T^{-1} M1=R1T1

回顾一下,R是通过摄像机三个基向量 r ⃗ 、 u ⃗ 、 − ⃗ f \vec r、\vec u、\vec -f r u f 定义而来,如下:
R = [ r x u x − f x 0 r y u y − f y 0 r z u z − f z 0 0 0 0 1 ] R = \begin{bmatrix} r_x & u_x & -f_x & 0\\ r_y & u_y & -f_y & 0\\ r_z & u_z & -f_z & 0\\ 0 & 0 & 0 & 1\\ \end{bmatrix} R= rxryrz0uxuyuz0fxfyfz00001
T是通过摄像机的位置 P = ( p x , p y , p z ) P = (p_x,p_y,p_z) P=(px,py,pz) 定义而来,如下:
T = [ 1 0 0 p x 0 1 0 p y 0 0 1 p z 0 0 0 1 ] T=\begin{bmatrix} 1 & 0 & 0 & p_x\\ 0 & 1 & 0 & p_y\\ 0 & 0 & 1 & p_z\\ 0 & 0 & 0 & 1\\ \end{bmatrix}\\ T= 100001000010pxpypz1

因而得到最终的 M − 1 M^{-1} M1矩阵,如下:
M − 1 = [ r x r y r z 0 u x u y u z 0 − f x − f y − f z 0 0 0 0 1 ] ∗ [ 1 0 0 − p x 0 1 0 − p y 0 0 1 − p z 0 0 0 1 ] = [ r x r y r z − r ⃗ ⋅ p ⃗ u x u y u z − u ⃗ ⋅ p ⃗ − f x − f y − f z f ⃗ ⋅ p ⃗ 0 0 0 1 ] \begin{align} M^{-1}&=\begin{bmatrix} r_x & r_y & r_z & 0\\ u_x & u_y & u_z & 0\\ -f_x & -f_y & -f_z & 0\\ 0 & 0 & 0 & 1\\ \end{bmatrix}*\begin{bmatrix} 1 & 0 & 0 & -p_x\\ 0 & 1 & 0 & -p_y\\ 0 & 0 & 1 & -p_z\\ 0 & 0 & 0 & 1\\ \end{bmatrix}\\ &= \begin{bmatrix} r_x & r_y & r_z & -\vec{r} \cdot \vec{p}\\ u_x & u_y & u_z & -\vec{u} \cdot \vec{p}\\ -f_x & -f_y & -f_z & \vec{f} \cdot \vec{p}\\ 0 & 0 & 0 & 1\\ \end{bmatrix} \end{align} M1= rxuxfx0ryuyfy0rzuzfz00001 100001000010pxpypz1 = rxuxfx0ryuyfy0rzuzfz0r p u p f p 1

模拟摄像机的移动

既然我们知道视图变换矩阵,由哪些变量控制,那咱们要通过WASD按键模拟摄像机的前进、后退、左移、右移,其实就对应着控制摄像机的位置向量而已。

那么究竟往什么方向移动呢?其实就受到上述坐标基向量 f ⃗ 、 r ⃗ \vec f、\vec r f r 的影响了!W对应 f ⃗ \vec f f 方向,S对应 − f ⃗ -\vec f f 方向,A对应 − r ⃗ -\vec r r 方向,D对应 r ⃗ \vec r r 方向!

既然方向有了,那么依次根据方向走多少呢?这个其实咱们可以通过实践进行调整,设置一个合理的步长即可!这里也就对应上述类中的 m o v e _ s p e e d _ move\_speed\_ move_speed_变量!

这里给出一个基本逻辑代码贴出:

glm::vec3 moveDirection = { 0.0f, 0.0f, 0.0f };

glm::vec3 front = front_;
glm::vec3 right = glm::normalize(glm::cross(front_, top_));

if (move_state_ & MOVE_FRONT) 
{
    moveDirection += front;
}

if (move_state_ & MOVE_BACK) 
{
    moveDirection += -front;
}

if (move_state_ & MOVE_LEFT) 
{
    moveDirection += -right;
}

if (move_state_ & MOVE_RIGHT) 
{
    moveDirection += right;
}

if (moveDirection != glm::vec3(0.0, 0.0, 0.0)) 
{
    moveDirection = glm::normalize(moveDirection);
    position_ += move_speed_ * moveDirection;
}

这里需要注意的是,在实现按键控制摄像机移动时,我们需要考虑多键位同时按下的情况,也就是有可能存在多个方位叠加的情况,所以上述是通过位运算进行判定移动状态!

模拟摄像机的旋转

我们思考一个问题,旋转代表什么含义?

通过上述的视图矩阵回顾我们知道主要由三个基向量决定,但是我们知道只要知道两个就可以叉乘得出另外一个。

我们又知道第三人称的射击类游戏,一般摄像机的穹顶 T o p ⃗ \vec {Top} Top 方向都是固定的为 ( 0 , 1 , 0 ) (0,1,0) (0,1,0),这样推论的话,也就一个 f ⃗ \vec f f 方向咱们是可以移动,也就是摄像机看向的方向,所以咱们需要通过这个向量来定义摄像机的旋转,示意图如下:

在这里插入图片描述

咱们观察右侧的公式,咱们通过引入pitch和yaw张角,从而定义 f r o n t ⃗ \vec {front} front 向量,也就是摄像机观察的方向向量。

这里我们注意一下,一般来说射击类游戏的摄像机pitch的角度是由范围限制的,也就是 ( − 90 , 90 ) (-90,90) (90,90) °的范围!为了保险起见,一般都是限制在 ( − 89 , 89 ) (-89,89) (89,89)°之间。

既然咱们可以通过约束 f ⃗ r o n t \vec front f ront 向量,来模拟摄像机的旋转,那么咱们就究竟是如何通过鼠标的移动转化的呢?

其实很简单,鼠标如果向上移动,就表示pitch角度变大,向下移动就表示pitch角度变小;同理,鼠标如果向左移动,就表示yaw角度变小,向右移动就表示yaw角度变大。至于变大或变小多少,就可以自定义一个合理的步长即可,类似上述的 m o u s e _ s e n s i t i v i t y _ mouse\_sensitivity\_ mouse_sensitivity_ 变量!

这里贴出pitch和yaw的逻辑代码片段,仅供参考:

void Camera::Pitch(int yoffset) 
{
	pitch_angle_ += yoffset * mouse_sensitivity_;

	if (pitch_angle_ >= 89.0f)
	{
		pitch_angle_ = 89.0f;
	}

	if (pitch_angle_ <= -89.0f)
	{
		pitch_angle_ = -89.0f;
	}

	front_.y = sin(glm::radians(pitch_angle_));
	front_.x = cos(glm::radians(yaw_angle_)) * cos(glm::radians(pitch_angle_));
	front_.z = sin(glm::radians(yaw_angle_)) * cos(glm::radians(pitch_angle_));

	front_ = glm::normalize(front_);
}

void Camera::Yaw(int xoffset) 
{
	yaw_angle_ += xoffset * mouse_sensitivity_;

	front_.y = sin(glm::radians(pitch_angle_));
	front_.x = cos(glm::radians(yaw_angle_)) * cos(glm::radians(pitch_angle_));
	front_.z = sin(glm::radians(yaw_angle_)) * cos(glm::radians(pitch_angle_));

	front_ = glm::normalize(front_);
}

于是咱们就大功告成了啊!如果需要学习相关代码的小伙伴,建议点击这里学习哦,如果对你有用的话,建议给仓库点个Start哦,感谢各位老铁们!

结尾:喜欢的小伙伴点点关注+赞哦!

你们的点赞就是我创作的最大动力!希望对各位小伙伴能够有所帮助哦,永远在学习的道路上伴你而行, 我是航火火,火一般的男人!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值