while(n != 0)
{
r = m % n;
m = n;
n = r;
}
printf("Their greatest common divisor is %d.\n", m);
都知道在求最大公因子(最大公约数)的时候,使用欧几里得算法(辗转相除法)。下面来研究这个算法怎么推论出来的。
首先看:
我们用 b|a 表示b整除a。也称b是a的因子。
用gcd(a,b)表示a和b的最大公因子。
如果 b|g 且 b|h,则对任意的整数m和n,有 b|(mg+nh)。
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------
下面推论:
假设我们有整数a,b使得d = gcd(a,b)。
根据除法,我们知道
a =q1b + r1 0 <= r1 < b
所以由 d | a 和 d | b 可以推出
d | (ma+nb) -----> d | (a - q1b ) ---------> d | r1
现在我们知道 d | b 和 d | r1
假设有任意的整数 c 整除 b 和 r1,则有c | (mb+nr1),所以有c | (q1b+r1) ------> c | a
因为 c 能同时整除 a 和 b,必须有 c <= d,而d 是 a和b的最大公因子。
因此,
d = gcd(b,r1)
如此循环,直到 ri = 0。
=================================================================================================================
欧几里德定理: gcd(a, b) = gcd(b , a mod b)
=================================================================================================================
扩展的欧几里德:
知道了 a 和 b 的最大公约数是 d ,那么,我们一定能够找到这样的 x 和 y ,使得:
ax + by = d = gcd(a,b)
我们观察到:欧几里德算法停止的状态是: a= gcd , b = 0 ,
当然这是最终状态,但是我们是否可以从最终状态反推到最初的状态呢?
假设当前我们要处理的是求出 a 和 b的最大公约数,并求出 x 和 y 使得 a*x + b*y= gcd ,而我们已经求出了下一个状态:b 和 a%b 的最大公约数,并且求出了一组x1 和y1 使得: b*x1 + (a%b)*y1 = gcd , 那么这两个相邻的状态之间是否存在一种关系呢?
我们知道:
a%b = a - (a/b)*b
(这里的 “/” 指的是整除,例如 5/2=2 , 1/3=0),那么,我们可以进一步得到:
gcd = b*x1 + (a-(a/b)*b)*y1
= b*x1 + a*y1 – (a/b)*b*y1
= a*y1 + b*(x1 – a/b*y1)
对比之前我们的状态:求一组 x 和 y 使得:a*x + b*y = gcd ,是否发现了什么?
这里:
x = y1
y = x1 – a/b*y1
以上就是扩展欧几里德算法的全部过程,依然用递归写:
应用在乘法逆元: