历史最全GAN网络及其各种变体整理(附论文及代码实现)

 

原创: lqfarmer 深度学习与NLP 2018-02-26

    文章主要整理了GAN网络及其各种变体模型,并给出了模型的论文出处及代码实现,结合最原始的论文和代码实现,可以加深对模型原理的理解。

 

目录

        GAN

        Auxiliary Classifier GAN

        Bidirectional GAN

        Boundary-Seeking GAN

        Context-Conditional GAN

        Coupled GANs

        CycleGAN

        Deep Convolutional GAN

        DualGAN

        Generative Adversarial Network

        InfoGAN

        LSGAN

        Semi-Supervised GAN

        Wasserstein GAN

GAN

实现最原始的,基于多层感知器构成的生成器和判别器,组成的生成对抗网络模型(Generative Adversarial)。

参考论文:《Generative Adversarial Networks》

代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/gan/gan.py

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值