原创: lqfarmer 深度学习与NLP 2018-02-26
文章主要整理了GAN网络及其各种变体模型,并给出了模型的论文出处及代码实现,结合最原始的论文和代码实现,可以加深对模型原理的理解。
目录
GAN
Auxiliary Classifier GAN
Bidirectional GAN
Boundary-Seeking GAN
Context-Conditional GAN
Coupled GANs
CycleGAN
Deep Convolutional GAN
DualGAN
Generative Adversarial Network
InfoGAN
LSGAN
Semi-Supervised GAN
Wasserstein GAN
GAN
实现最原始的,基于多层感知器构成的生成器和判别器,组成的生成对抗网络模型(Generative Adversarial)。
参考论文:《Generative Adversarial Networks》
代码地址:https://github.com/eriklindernoren/Keras-GAN/blob/master/gan/gan.py