网络流dinic算法

面对网络流问题,Dinic算法提供了一种高效解决方案。通过层次图优化,确保每次深度搜索只在相邻层次间进行,显著提升效率,达到O(n^2 * m)的时间复杂度。算法包含计算层次、深度搜索找增广和迭代过程。适合处理中等规模网络流问题,避免TLE。
摘要由CSDN通过智能技术生成

遇到过不少网络流的题目,直接找增广路径的方法时间复杂度实在受不了。常面临TLE的问题。通过学习这个dinic算法,不仅代码短,效率也高。

该算法的重点在于一个层次图,是在普通增广的方法上加了优化,普通的增广是每次在图上四处游荡,直到找到汇点为止。dinic算法就是把每个点都给一个等级level(level(i)是点i到源点的最近距离),把它们分在不同的层次之中,对于点u,v只有满足level(v) = level(u) + 1,才能通过。有了层次以后,就可以用一次深度搜索找出所有的流,找到汇点后并不是退回到源点。dinic的效率就体现在这里。时间复杂度O(n * n * m),在实践效果中一般效率很高。

这里描述一下整体框架:

1.算出层次图,如果找不到汇点,就结束算法;

2.一次深度搜索找增广;

3.回到步骤1。

对于具体的实现,我觉得用直接深度比较好,因为栈模拟代码容易出错,并且一般网络流的题结点数不会太多,深搜也不会栈溢出。

还可以加上一个pre数组,避免无用边的循环,提高速度。

#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;

const int N = 207;
const int M = 207;

int n, m, nedge;
int from[N], to[M << 1], next[M << 1], cap[M << 1];
int pre[N
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值