【AI】PyTorch入门(三):数据集和数据加载器

115 篇文章 ¥69.90 ¥99.00
本文介绍了PyTorch中的数据集处理,包括数据集的描述类、预加载数据集如FashionMNIST的使用,以及如何进行数据可视化和自定义数据。PyTorch提供内置数据集,方便进行图像、音频、文本的处理,并通过DataLoader进行高效加载。文章还展示了自定义数据集的实现方法,包括CSV文件格式的数据描述。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、简述

PyTorch中对数据集的描述类都是从torch.utils.data.Dataset继承,然后交给torch.utils.data.DataLoader来处理。
在模型训练时,只操作 torch.utils.data.DataLoader 即可,这样就将数据集的代码和训练的代码分离,方便维护。

2、PyTorch预加载数据集

PyTorch针对图像、音频、文本都提供了常用的内置数据集。这些数据集继承自torch.utils.data.Dataset,并且实现了如下方法,可以传递给torch.utils.data.DataLoader

__getitem__
__len__

数据加载示例:

imagenet_data = torchvision.datasets.ImageNet('path/to/imagenet_root/')
data_loader = torch.utils.data.DataLoader(imagenet_data,
                                          batch_size=4,
                                          shuffle=True,
                                          num_workers
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郭老二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值