【AI】《动手学-深度学习-PyTorch版》笔记(十):使用PyTorch框架实现线性回归

106 篇文章 69 订阅 ¥69.90 ¥99.00
本文是基于《动手学-深度学习-PyTorch版》的笔记,详细介绍了如何使用PyTorch实现线性回归。内容包括数据生成、数据加载、模型定义、参数初始化、损失函数和优化器的选择,以及训练过程的详细步骤,帮助读者理解PyTorch的基本操作。
摘要由CSDN通过智能技术生成

AI学习目录汇总

1、生成数据

生成数据的函数在d2l中:d2l.synthetic_data

import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

true_w = torch.tensor
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

郭老二

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值