动手学深度学习3.2线性回归的从零开始实现-笔记&练习(PyTorch)

以下内容为结合李沐老师的课程和教材补充的学习笔记,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。

本节课程地址:线性回归的从零开始实现_哔哩哔哩_bilibili

本节教材地址:3.2. 线性回归的从零开始实现 — 动手学深度学习 2.0.0 documentation (d2l.ai)

本节开源代码:...>d2l-zh>pytorch>chapter_linear-networks>linear-regression-scratch.ipynb


线性回归的从零开始实现

在了解线性回归的关键思想之后,我们可以开始通过代码来动手实现线性回归了。 在这一节中,(我们将从零开始实现整个方法, 包括数据流水线、模型、损失函数和小批量随机梯度下降优化器)。 虽然现代的深度学习框架几乎可以自动化地进行所有这些工作,但从零开始实现可以确保我们真正知道自己在做什么。 同时,了解更细致的工作原理将方便我们自定义模型、自定义层或自定义损失函数。 在这一节中,我们将只使用张量和自动求导。 在之后的章节中,我们会充分利用深度学习框架的优势,介绍更简洁的实现方式。

%matplotlib inline
import random 
import torch
from d2l import torch as d2l

生成数据集

为了简单起见,我们将[根据带有噪声的线性模型构造一个人造数据集。] 我们的任务是使用这个有限样本的数据集来恢复这个模型的参数。 我们将使用低维数据,这样可以很容易地将其可视化。 在下面的代码中,我们生成一个包含1000个样本的数据集, 每个样本包含从标准正态分布中采样的2个特征。 我们的合成数据集是一个矩阵 \mathbf{X}\in \mathbb{R}^{1000 \times 2}

(**我们使用线性模型参数 、\mathbf{w} = [2, -3.4]^\topb = 4.2 和噪声项 \epsilon 生成数据集及其标签:

\mathbf{y}= \mathbf{X} \mathbf{w} + b + \mathbf\epsilon.**)

\epsilon 可以视为模型预测和标签时的潜在观测误差。 在这里我们认为标准假设成立,即 \epsilon 服从均值为0的正态分布。 为了简化问题,我们将标准差设为0.01。 下面的代码生成合成数据集。

def synthetic_data(w, b, num_examples):  #@save
    """生成y=Xw+b+噪声"""
    X = torch.normal(0, 1, (num_examples, len(w)))
    y = torch.matmul(X, w) + b
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape((-1, 1))
true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

注意,[features中的每一行都包含一个二维数据样本(X), labels中的每一行都包含一维标签值(一个标量)(y)]。

print('features:', features[0],'\nlabel:', labels[0])

输出结果:

features: tensor([1.1331, 0.0947])
label: tensor([6.1539])

通过生成第二个特征features[:, 1]labels的散点图, 可以直观观察到两者之间的线性关系。

d2l.set_figsize()
d2l.plt.scatter(features[:, 1].detach().numpy(), labels.detach().numpy(), 1);
# 使用detach().numpy()将tensor对象从计算图中分离出来,并转换为numpy数组,进行绘制

读取数据集

回想一下,训练模型时要对数据集进行遍历,每次抽取一小批量样本,并使用它们来更新我们的模型。 由于这个过程是训练机器学习算法的基础,所以有必要定义一个函数, 该函数能打乱数据集中的样本并以小批量方式获取数据。

在下面的代码中,我们[定义一个data_iter函数, 该函数接收批量大小、特征矩阵和标签向量作为输入,生成大小为batch_size的小批量]。 每个小批量包含一组特征和标签。

def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))
    # 这些样本是随机读取的,没有特定的顺序
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]

通常,我们利用GPU并行运算的优势,处理合理大小的“小批量”。 每个样本都可以并行地进行模型计算,且每个样本损失函数的梯度也可以被并行计算。 GPU可以在处理几百个样本时,所花费的时间不比处理一个样本时多太多。

我们直观感受一下小批量运算:读取第一个小批量数据样本并打印。 每个批量的特征维度显示批量大小和输入特征数。 同样的,批量的标签形状与batch_size相等。

batch_size = 10

for X, y in data_iter(batch_size, features, labels):
    print(X, '\n', y)
    break

输出结果:

tensor([[-0.6966, 0.2079],
[-1.4374, -0.1049],
[-0.3717, -0.0734],
[-1.7703, 0.1110],
[ 3.1394, -1.1923],
[ 0.1055, 0.3089],
[ 1.5195, 0.5335],
[-2.1175, -0.3790],
[ 0.4449, -0.2879],
[ 1.5303, -0.2278]])
tensor([[ 2.1241],
[ 1.6791],
[ 3.7046],
[ 0.2787],
[14.5269],
[ 3.3543],
[ 5.4206],
[ 1.2500],
[ 6.0610],
[ 8.0352]])

当我们运行迭代时,我们会连续地获得不同的小批量,直至遍历完整个数据集。 上面实现的迭代对教学来说很好,但它的执行效率很低,可能会在实际问题上陷入麻烦。 例如,它要求我们将所有数据加载到内存中,并执行大量的随机内存访问。 在深度学习框架中实现的内置迭代器效率要高得多, 它可以处理存储在文件中的数据和数据流提供的数据。

初始化模型参数

[在我们开始用小批量随机梯度下降优化我们的模型参数之前], (我们需要先有一些参数)。 在下面的代码中,我们通过从均值为0、标准差为0.01的正态分布中采样随机数来初始化权重, 并将偏置初始化为0。

w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)

在初始化参数之后,我们的任务是更新这些参数,直到这些参数足够拟合我们的数据。 每次更新都需要计算损失函数关于模型参数的梯度。 有了这个梯度,我们就可以向减小损失的方向更新每个参数。 因为手动计算梯度很枯燥而且容易出错,所以没有人会手动计算梯度。 我们使用 2.5节 中引入的自动微分来计算梯度。

定义模型

接下来,我们必须[定义模型,将模型的输入和参数同模型的输出关联起来。] 回想一下,要计算线性模型的输出, 我们只需计算输入特征 \mathbf{X} 和模型权重 \mathbf{w} 的矩阵-向量乘法后加上偏置 b 。 注意,上面的 \mathbf{Xw} 是一个向量,而 b 是一个标量。 回想一下 2.1.3节 中描述的广播机制: 当我们用一个向量加一个标量时,标量会被加到向量的每个分量上。

def linreg(X, w, b):  #@save
    """线性回归模型"""
    return torch.matmul(X, w) + b

[定义损失函数]

因为需要计算损失函数的梯度,所以我们应该先定义损失函数。 这里我们使用 3.1节 中描述的平方损失函数。 在实现中,我们需要将真实值y的形状转换为和预测值y_hat的形状相同。

def squared_loss(y_hat, y):  #@save
    """均方损失"""
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2

(定义优化算法)

正如我们在3.1节中讨论的,线性回归有解析解。 尽管线性回归有解析解,但本书中的其他模型却没有。 这里我们介绍小批量随机梯度下降。

在每一步中,使用从数据集中随机抽取的一个小批量,然后根据参数计算损失的梯度。 接下来,朝着减少损失的方向更新我们的参数。 下面的函数实现小批量随机梯度下降更新。 该函数接受模型参数集合、学习速率和批量大小作为输入。每 一步更新的大小由学习速率lr决定。 因为我们计算的损失是一个批量样本的总和,所以我们用批量大小(batch_size) 来规范化步长,这样步长大小就不会取决于我们对批量大小的选择。

def sgd(params, lr, batch_size):  #@save
    """小批量随机梯度下降"""
    with torch.no_grad():
        for param in params: # param为 w, b
            param -= lr * param.grad / batch_size
            param.grad.zero_()

训练

现在我们已经准备好了模型训练所有需要的要素,可以实现主要的[训练过程]部分了。 理解这段代码至关重要,因为从事深度学习后, 相同的训练过程几乎一遍又一遍地出现。 在每次迭代中,我们读取一小批量训练样本,并通过我们的模型来获得一组预测。 计算完损失后,我们开始反向传播,存储每个参数的梯度。 最后,我们调用优化算法sgd来更新模型参数。

概括一下,我们将执行以下循环:

  • 初始化参数
  • 重复以下训练,直到完成
    • 计算梯度 \mathbf{g} \leftarrow \partial_{(\mathbf{w},b)} \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} l(\mathbf{x}^{(i)}, y^{(i)}, \mathbf{w}, b)
    • 更新参数 (\mathbf{w}, b) \leftarrow (\mathbf{w}, b) - \eta \mathbf{g}

在每个迭代周期(epoch)中,我们使用data_iter函数遍历整个数据集, 并将训练数据集中所有样本都使用一次(假设样本数能够被批量大小整除)。 这里的迭代周期个数num_epochs和学习率lr都是超参数,分别设为3和0.03。 设置超参数很棘手,需要通过反复试验进行调整。 我们现在忽略这些细节,以后会在 :numref:chap_optimization中详细介绍。

lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

输出结果:

epoch 1, loss 0.044127
epoch 2, loss 0.000184
epoch 3, loss 0.000051

因为我们使用的是自己合成的数据集,所以我们知道真正的参数是什么。 因此,我们可以通过[比较真实参数和通过训练学到的参数来评估训练的成功程度]。 事实上,真实参数和通过训练学到的参数确实非常接近。

print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')

输出结果:

w的估计误差: tensor([ 0.0002, -0.0009], grad_fn=<SubBackward0>)
b的估计误差: tensor([-0.0001], grad_fn=<RsubBackward1>)

注意,我们不应该想当然地认为我们能够完美地求解参数。 在机器学习中,我们通常不太关心恢复真正的参数,而更关心如何高度准确预测参数。 幸运的是,即使是在复杂的优化问题上,随机梯度下降通常也能找到非常好的解。 其中一个原因是,在深度网络中存在许多参数组合能够实现高度精确的预测。

小结

  • 我们学习了深度网络是如何实现和优化的。在这一过程中只使用张量和自动微分,不需要定义层或复杂的优化器。
  • 这一节只触及到了表面知识。在下面的部分中,我们将基于刚刚介绍的概念描述其他模型,并学习如何更简洁地实现其他模型。

练习

1. 如果我们将权重初始化为零,会发生什么。算法仍然有效吗?

解:
在线性回归中,由于只有一层神经网络,且SGD过程中,梯度求导后结果与参数本身无关,而是取决于输入
 �  � ,因此,可以将权重初始化为0,算法仍然有效(试验如下)。
但是,在多层神经网络中,如果将权重初始化为0,或者其他统一的常量,会导致后面迭代的权重更新相同,并且神经网络中的激活单元的值相同,输出的梯度也相等,导致对称性问题,无法进行独立学习,找到最优解。

w = torch.zeros((2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

输出结果:

epoch 1, loss 0.044151
epoch 2, loss 0.000182
epoch 3, loss 0.000052

2. 假设试图为电压和电流的关系建立一个模型。自动微分可以用来学习模型的参数吗?

解:
将电压和电流的关系建立模型为,U=Iw+b,转化为线性回归问题,可用自动微分学习模型的参数并更新,逐步优化模型使得损失函数最小化,并使得模型能够更好地拟合电压和电流之间的关系。

3. 能基于普朗克定律使用光谱能量密度来确定物体的温度吗?

解:
可以基于普朗克定律,使用光谱能量密度来确定物体的温度。如下:
根据普朗克定律,黑体辐射的能谱密度可以表示为: B(\lambda,T) = (2hc^2/\lambda^5)/(e^ {(hc/\lambda kT) }- 1)其中,B(λ, T)是波长为λ时温度为T的黑体辐射的能谱密度,h是普朗克常数,c是光速,k是玻尔兹曼常数。
根据此定律,当给定了物体的光谱能量密度分布(即不同波长上的能谱密度值),我们可以反推出物体的温度。具体的步骤如下:
1)从物体获取光谱数据,即记录不同波长上的能谱密度值。
2)将能谱密度值带入普朗克定律的表达式中。
3)利用SGD,将测量到的能谱密度与普朗克定律的表达式中得到的能谱密度进行比较。
4)通过迭代,找到与实测数据最匹配的温度值,这个温度值就是物体的温度。

4. 计算二阶导数时可能会遇到什么问题?这些问题可以如何解决?

解:
二阶导数包含了更多关于损失函数曲率的信息,因此在某些情况下,计算二阶导数可能有助于更快地收敛和更准确的更新。然而,由于计算复杂度较高,通常在实际应用中很少使用。
以下是计算二阶导数时可能会遇到的问题,以及可能的解决方法:
1)计算复杂度高: 计算Hessian矩阵需要更多的计算资源和时间,尤其在大规模数据和复杂模型上。
解决方法: 通常可以使用近似方法来估计二阶导数,例如L-BFGS(Limited-memory Broyden-Fletcher-Goldfarb-Shanno)等优化算法。这些方法在一定程度上降低了计算成本,同时仍能提供较好的优化效果。
2)存储需求大: Hessian矩阵的存储需求随着参数数量的增加而增加,可能导致内存不足的问题。
解决方法: 使用一些高效的矩阵近似方法,如块对角近似(block-diagonal approximation)或采样Hessian近似,来减少存储需求。
3)数值不稳定性: 在计算Hessian矩阵时,可能会遇到数值不稳定性,导致数值误差累积,影响优化结果。
解决方法: 使用数值稳定的计算方法,例如通过添加小的正则化项来避免矩阵的奇异性。另外,选择合适的优化算法和学习率调度也可以帮助稳定优化过程。
4)局部极小值和鞍点: 在高维空间中,存在许多局部极小值和鞍点,这可能导致Hessian矩阵的谱值较小,使得计算二阶导数的结果不稳定。
解决方法: 使用正则化技术、随机性优化方法(如随机梯度牛顿法)或基于自适应学习率的算法,可以帮助逃离局部极小值和鞍点。
总之,虽然计算二阶导数在优化中具有一定的潜在优势,但在实际应用中,由于上述问题和计算成本,往往更常使用一阶优化方法(如SGD、Adam等)及其变种。选择优化方法时,需要根据具体问题的特点来权衡二阶信息带来的优势和计算成本。

5. 为什么在squared_loss函数中需要使用reshape函数?

解:
因为y_hat和y的元素个数相同,但shape不一定相同(虽然在本节中二者shape一致),为了保证计算时不出错,故使用reshape函数将二者的shape统一。

6. 尝试使用不同的学习率,观察损失函数值下降的快慢。

解:
学习率越小,损失函数值下降越慢,反之亦然;
但当学习率过高时,损失函数值将出现infnan。试验如下:

w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)
lr = 0.001
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

输出结果:

epoch 1, loss 13.210416
epoch 2, loss 10.882115
epoch 3, loss 8.964668

lr = 3
num_epochs = 3
net = linreg
loss = squared_loss
for epoch in range(num_epochs):
    for X, y in data_iter(batch_size, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

输出结果:

epoch 1, loss inf
epoch 2, loss nan
epoch 3, loss nan

6. 如果样本个数不能被批量大小整除,data_iter函数的行为会有什么变化?

解:
num_examples不能被batch_size整除,data_iter函数的行为会有以下变化:

1)最后一个批次的样本数量会小于batch_size:在for循环中,当i递增到最后一个不完整的批次时,min(i+batch_size, num_examples)会返回一个小于batch_size的值,这意味着最后一个批次的样本数量会少于batch_size。
2)最后一个批次中的样本顺序将不一定是随机的:由于样本在indices列表中是随机排列的,而最后一个批次的样本数量小于batch_size,因此在取最后一个批次时,实际上是从indices列表末尾开始继续取样本,直到达到indices列表的末尾。因此,最后一个批次中的样本顺序将不再随机,而是按照indices列表的顺序。
随机化样本的目的通常是为了打乱样本的顺序,使得模型在训练过程中能够接触到各种不同类型的样本。但由于最后一个不完整批次的样本顺序不再随机,可能会引入一些偏差。因此,在设计实际应用中的data_iter函数时,可以考虑在最后一个不完整批次中重新进行随机化操作,以减小这种偏差的影响。
试验如下:

def data_iter(batch_size, features, labels):
    num_examples = int(len(features)/100)
    indices = list(range(num_examples))
    # 这些样本是随机读取的,没有特定的顺序
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])
        yield features[batch_indices], labels[batch_indices]
batch_size = 7

for X, y in data_iter(batch_size, features, labels):
    print(X, '\n', y)

输出结果:

tensor([[ 1.0903, -0.0947],
[ 0.1203, 0.9302],
[-0.0843, -1.1150],
[-0.2253, 0.2689],
[-1.3705, 1.4262],
[-2.5419, 2.3738],
[-1.9008, 1.2435]])
tensor([[ 6.7004],
[ 1.2781],
[ 7.8223],
[ 2.8348],
[-3.3952],
[-8.9684],
[-3.8481]])
tensor([[-0.3739, 0.0578],
[ 1.1188, 2.2842],
[ 1.1331, 0.0947]])
tensor([[ 3.2707],
[-1.3230],
[ 6.1539]])

  • 32
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

scdifsn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值