人工智能
文章平均质量分 93
分享人工智能相关的知识,包括AIGC、NLP、LLMs、大模型RAG、大模型微调等技术和领域知识等等。
Halo 咯咯
从1到100很简单,但是从0到1却很难(不过,现在有一些0到1的工作可以丢给AI了)。
展开
-
【深度好文】LLMOps揭秘:AI工作流程的高效管理之道!
检索增强生成(RAG)是其中最有前景的方向之一,它结合了LLMs的优势和外部知识库,生成更准确、更丰富的输出。随着更精细的工具的推出,我们将见证它们如何彻底改变我们处理医疗保健计划、财务咨询和法律事务的方式,这无疑将带来一场革命性的变化。此外,重要的是要让所有利益相关者,包括数据科学家、机器学习工程师和DevOps团队,参与到框架创建过程中,以确保每个人都对齐目标并朝着相同的方向努力。因此,积极识别和减少训练数据中的偏见,并定期检查模型输出的公平性,是至关重要的。原创 2024-07-01 18:45:00 · 933 阅读 · 0 评论 -
2024 年最值得阅读的 ChatGPT 书籍
这是一本简短的书,解释了 ChatGPT 的工作原理以及它如何能够以令人信服的人类水平进行写作。它提供了使用各种模型(例如 GPT-4、BERT、T5 等)的代码,并解释了它们的工作原理。它解释了该模型的运作方式以及我们如何简化业务并提高我们的专业技能。作者还解释了机器学习的基础知识,以及我们如何使用法学硕士构建强大的人工智能代理来自动化我们的任务。这本书解释了 GPT-4 和 ChatGPT 的工作原理,以及我们如何使用它们来开发文本生成、问答和内容摘要工具。这是有关如何通过该模型快速轻松赚钱的指南。原创 2024-04-02 08:56:00 · 980 阅读 · 0 评论 -
Transformers -- 深入研究 - part 3
公众号:Halo咯咯,欢迎关注~世界正在为人工智能和生成式人工智能而疯狂,特别是 2023 年的 ChatGPT 和大型语言模型。在我们讨论本系列后续部分的技术细节之前,让我们先从它的想法和生态系统开始。原创 2024-04-01 21:27:43 · 993 阅读 · 0 评论 -
矢量数据库:连接人工智能应用程序的数据复杂性与可用性的桥梁
矢量数据库是一种专门设计的数据库,专注于高效地存储、管理和操作矢量数据。与传统数据库处理标量值(如数字、字符串、日期)不同,矢量数据库针对的是那些表现为多维数据点的向量,这些向量通常由机器学习模型从复杂的数据类型如图像、视频、文本和音频中提取而来。这种多维表示使得矢量数据库能够优化对这类复杂数据的处理,从而在人工智能和大数据分析等应用中发挥关键作用。矢量数据库的重要性体现在它们能够高效处理和解析非结构化数据的复杂性和细微差异,这在当今数字化世界中变得越来越常见。原创 2024-03-30 20:32:12 · 889 阅读 · 0 评论 -
Transformers -- 未知英雄 - Part2
前文回顾:在第一部分中,我提到了“单词”这一概念,但请注意,这仅仅是为了表述上的便利。实际上,“令牌”(token)这一术语更为精确。接下来,我们将探讨标记化(tokenization)的含义以及各种模型是如何运用各自的标记化机制的。标记化是自然语言处理中的一项基本技术,它涉及将文本序列分解成模型能够理解的单个单元,这些单元可以是单词、子词或标记。在构建大型语言模型(LLMs)时,采用如BPE(Byte Pair Encoding)或WordPiece等子词算法进行标记化尤为重要。原创 2024-03-30 19:59:08 · 860 阅读 · 0 评论 -
Transformers -- 以通俗易懂的方式解释 - Part 1
本系列主要介绍了为ChatGPT以及许多其他大型语言模型(LLM)提供支持的Transformer神经网络。我们将从基础的Transformer概念开始介绍,尽量避免使用数学和技术细节,使得更多人能够理解这一强大的技术。在ChatGPT或其他类似的大型语言模型(LLM)中,当您提出问题后,模型会生成一系列单词作为回答,这个过程可能看起来就像您的朋友通过消息应用程序逐字回复您的消息一样。不过,这里的一个区别是,模型在生成每个单词时都进行了精心的计算和选择,而不是简单地按发送键。原创 2024-03-29 23:03:45 · 904 阅读 · 0 评论 -
Apache Kafka + 矢量数据库 + LLM = 实时 GenAI
根据您的具体应用,您可能会找到满足您特定需求的系统。Elemental Cognition 的方法将不同的人工智能策略结合在一个新颖的架构中,该架构获取并推理人类可读的知识,以协作和动态地解决问题。使用 Apache Kafka 和 Apache Flink 的数据流可以实现任何规模的数据一致同步(实时,如果应用程序或数据库可以处理)和数据管理(= 流式 ETL)。在这种情况下,矢量数据是指数值矢量的集合,它可以表示多种数据类型,例如文本、图像、音频或任何其他结构化或非结构化数据的嵌入。原创 2024-03-29 22:47:24 · 1179 阅读 · 0 评论 -
大型语言模型:技术回顾
很难说自然语言处理(NLP)的旅程是什么时候开始的。根据维基百科的文章《自然语言处理的历史》[1],它可能始于 17 世纪,当时莱布尼茨和笛卡尔试图理解不同语言中单词之间的关系,也可能是由艾伦·图灵的工作发起的,包括他的问题“机器能思考吗?以及他著名的模仿游戏[2]。众所周知,计算机科学家不断突破 NLP 的界限,旨在创造真正理解人类语言的机器,从 1967 年开发 Eliza 等基于规则的基本聊天机器人,一直到发明更复杂的深度学习方法。3]。图 1 展示了大型语言模型 (LLM) 的粗略时间表。原创 2024-03-28 18:40:35 · 787 阅读 · 0 评论 -
LoRA构建:利用数学知识进行低阶自适应分析并在 PyTorch 中实现
公众号:Halo 咯咯本文中将介绍了解 LoRA 是什么,并用数学原理知识来描述 LoRA 有效微调大型模型,最后从头开始创建我们自己的 LoRA 并使用它来微调我们的模型。原创 2024-03-27 19:54:42 · 1198 阅读 · 0 评论 -
7种RAG工具,让你的LLMs发挥最大效用
很棒的内容,对吧?随着大型语言模型(LLMs)在各个行业中的广泛应用,利益相关者的需求将变得更加复杂,因为请求变得更加多样化。所以,如果你想跟上最新的讨论、框架和技术,以便从你的LLM中获得最大的收益,那么你会想要在4月23日至25日参加ODSC East会议。在ODSC East会议上,有一个完整的专题讨论会专门致力于大型语言模型。你可以向业界领袖、研究人员以及人工智能领域的前沿人物学习。利用ReAct、LLMs和LangChain实现复杂推理和行动。原创 2024-03-27 08:35:31 · 3297 阅读 · 0 评论 -
2024年国外最好的大型语言模型(LLMs)
大语言模型(英文:Large Language Model,缩写LLM),也称大型语言模型,是一种人工智能模型,旨在理解和生成人类语言。它们在大量的文本数据上进行训练,可以执行广泛的任务,包括文本总结、翻译、情感分析等等。LLM的特点是规模庞大,包含数十亿及以上的参数,帮助它们学习语言数据中的复杂模式。这些模型通常基于深度学习架构,如转化器,这有助于它们在各种NLP任务上取得令人印象深刻的表现。原创 2024-03-22 11:12:12 · 1224 阅读 · 0 评论 -
xAI开发的一款巨大型语言模型(HLM)--Grok 1
Grok-1拥有3140亿个参数,是目前为止市场上最大的开源模型。与OpenAI的GPT-3相比,Grok的参数大小是GPT-3的三倍多。Grok 旨在以机智的方式回应,并在其回答中加入一些幽默元素。与其他大型语言模型(LLMs)不同,Grok 拥有来自 X 平台的实时世界知识。它还能回答大多数大型语言模型所拒绝的问题。Grok仍处于测试阶段,因为仅训练了2个月。但它的性能将日益提高。Grok-1 目前设计有以下规格:参数:314B架构:8 名专家的组合 (MoE)原创 2024-03-19 17:29:39 · 1109 阅读 · 0 评论 -
谷歌开源的LLM大模型 Gemma 简介
谷歌推出了 Gemma,一个开放大型语言模型 (LLM) 的尖端系列,标志着其致力于开源人工智能的重要一步。同时Gemma 与 Hugging Face 平台的无缝集成,可以让AIGC爱好者更好的去使用。Gemma 是基于 Gemini 技术推出的四款新型大型语言模型(LLM),提供了 2B 和 7B 两种不同规模的版本,每种都包含了预训练基础版本和经过指令优化的版本。gemma-7b:7B 参数的基础模型。:7B 参数的指令优化版本。gemma-2b:2B 参数的基础模型。原创 2024-03-07 10:15:26 · 2223 阅读 · 0 评论