2024年国外最好的大型语言模型(LLMs)

本文介绍了2024年国外的重要大型语言模型(LLMs),如ChatGPT、谷歌的Bard和Anthropic的Claude。LLMs基于深度学习,尤其是转化器架构,经过大规模语料训练,能执行多种任务,如文本生成、翻译和情感分析。尽管存在局限,但LLMs正广泛应用于聊天机器人、内容创作和数据分析等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大型语言模型(LLMs)是处理文本的主要人工智能类型,目前市面上出现了很多种不同的模型。毫无疑问,ChatGPT是最著名一个使用LLM的工具——由OpenAI的GPT模型的特殊调优版本提供支持。但还有许多其他聊天机器人和文本生成器——包括从谷歌的Bard到Anthropic的Claude,再到Writesonic和Jasper等都是建立在LLM之上的。

从2010年代末开始,LLMs一直在研究实验室中慢慢酝酿,但在ChatGPT发布之后(它展示了GPT的强大力量),如今已经冲出实验室,进入了现实世界。

有一些LLMs已经开发了多年,其他一些则是为了抓住最新的炒作周期而迅速创建的。还有更多是开源研究工具。在这里将介绍几个目前市场上最重要的国外LLMs。

The best LLMs in 2024

目前有许多重要的LLMs,还有数百个在其他方面具有影响力的模型。要列出所有的模型几乎是不可能的,而且无论如何,由于LLMs的发展速度非常快,这次的列表很快就会过时,所以仅供参考。

LLM

开发公司

应用的热门程序

参数量

访问接入

GPT

OpenAI

Microsoft, Duolingo, Stripe, Zapier, Dropbox, ChatGPT

175 billion+

API

Gemini

Google

Some queries on Bard

Nano: 1.8 & 3.25 billion; others unknown

API

### 大型语言模型概述 大型语言模型(Large Language Models, LLMs)代表了一类基于深度学习技术构建的强大自然语言处理工具。这些模型通过大规模语料库训练,在多种任务上展现出卓越性能,包括但不限于文本生成、问答系统以及对话代理。 #### 发展历程与特性 LLMs经历了四个发展阶段:预训练-微调范式下的早期探索;引入自监督学习机制后的架构创新;参数量级突破百亿乃至千亿规模所带来的质变效应;最终形成具备广泛适用性的通用人工智能平台[^1]。相较于传统的小型或特定领域限定的语言模型LLMs具有显著优势——更强的泛化能力和更少的数据依赖性。 #### 关键差异对比 当比较LLMs与其他类型的预训练语言模型时,主要存在三点不同之处: - **数据需求**:前者能够利用互联网上的海量无标注文本资源进行高效训练; - **上下文理解力**:后者往往受限于固定长度的历史记录窗口大小,而前者则能更好地捕捉长期依赖关系; - **迁移灵活性**:对于下游应用场景而言,仅需少量样本即可实现良好适配效果。 #### 应用场景拓展 除了传统的文字处理外,多模态融合成为新的研究热点之一。例如Video-LLaMA框架允许同时解析视频中的视觉和听觉信息,并将其转换成连贯的语言描述,从而支持更加复杂的人机交互形式[^3]。 此外,在实际业务操作层面,诸如内容审查这样的功能也得到了极大增强。借助于强大的分类识别技能,经过专门调整优化过的LLM版本可以迅速响应政策变动并精准定位违规行为,极大地提高了工作效率和服务质量[^4]。 ```python # Python代码示例展示如何加载一个预训练好的LLM用于简单的情感分析任务 from transformers import pipeline sentiment_analysis = pipeline("sentiment-analysis") result = sentiment_analysis(["We are very happy to see you!", "This is so annoying."]) print(result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Halo 咯咯

有你的支持我会更加努力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值