漫步数学分析九——级数

R1 类似,我们可以考虑 Rn 中的级数。

9 对于级数 Σk=0xk ,其中 xkRn ,如果它的部分和 sk=Σki=0xi 序列收敛到 x ,那么我们就成该级数收敛到xRn,我们写作 Σk=0xk=x

如定理8那样, Σk=0xk=x 等价于级数的元素收敛到相应 x 的元素。

应用定理10到sk上就得到定理11。

11 Rn 中的级数 Σxk 收敛,当且仅当对每个 ε>0 ,存在一个 N 使得kN xk+xk+1++xk+p<ε 对所有整数 p=0,1,2, 都成立。

特别地,取 p=0 ,我们可以看出如果 Σxk 收敛,那么当 k xk0

级数 Σxk 绝对收敛,当且仅当实级数 Σxk 收敛。

12 如果 Σxk 绝对收敛,那么 Σxk 是收敛的。

这个定理非常有用,因为当判断 Σxk 的收敛性时,我们可以判断 Σxk 的收敛性(利用用ratio test)。当然,即便 Σxk 是收敛的,这种判别方法可能失效,这时候就需要其他的方法来判别。

接下来我们讨论一些非常重要的判别级数收敛的方法。这里先给出一些事实,随后还会给出。

13

  1. 如果 |r|<1 ,那么级数 Σn=0rn 收敛到 1/(1r) ;如果 |r|1 ,那么该级数发散(不收敛)。
  2. 比较测试(comparison test):如果 Σk=1ak 收敛, ak0 并且 0bkak ,那么 Σk=1bk 收敛;如果 Σk=1ck 发散, ck0 ,并且 0ckdk ,那么 Σk=1dk 发散。
  3. p级数测试:如果 p>1 ,那么级数 Σn=1np 收敛;如果 p1 ,那么该级数发散到 (也就是说,部分和递增且没有边界)。
  4. 比率测试(ratio test):假设极限 limn|(an+1/an)| 存在并且小于1,那么级数 Σn=1an 绝对收敛;如果极限大于1,那么级数发散;如果极限等于1,那么该测试失效。
  5. 根号测试(root test):假设极限 limn(|an|)1/n 存在且小于1,那么 Σn=1an 绝对收敛;如果极限大于1,级数发散;如果级数等于1,该测试失效。
  6. 积分测试(integral test):如果 f [1,+)上的连续,非负,单调递减函数,那么 Σn=1f(n) 1f(x)dx 要么都收敛,要么都发散。

1 xn=(1/n2,1/n) Σxn 收敛吗?

答案为否。因为利用 (iii) ,调和级数 Σ1/n 发散。

2 xn1/2n ;证明 Σxn 收敛且 Σ0xn2

我们验证定理11的条件,

xk++xk+pxk++xk+p12k++12k+pj=k12j=12k1

(几何级数和的公式为 Σ0arn=a/(1r) ),于是给定 ε>0 ,选择一个 N 使得1/2N1<ε,因此 Σxk 收敛。而且,部分和满足

snk=0nxkk=0n12k2

因此根据上节的例2可知极限 s 也满足s2。我们也可以直接将级数 Σxn 与几何级数 Σ1/2n 比较说明级数的收敛。

3 判断级数 n=1n/3n 的收敛性。

我们利用比率测试方法:

|an+1an|=n+1n1313

所以级数收敛。

4 判断级数 Σn=1n/(n2+1) 是否收敛。

通过观察可知,对于 x1,f(x)=x/(x2+1) 是正且连续的函数。因为 f(x)=(x2+1)/(x2+1)20 ,所以 f 是单调递减的。

1xdxx2+1=limbb1xdxx2+1=limb[12log(x2+1)]|b1=limb12log((b2+1)/2)

但是当 b 时, 12log((b2+1)/2) ,所以利用积分测试可知该级数发散。也可以用比较法: n/(n2+1)n/(n2+n2)=1/2n ,级数 (1/2)Σ1/n 是发散的,所以可得级数是发散的。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值