与 R1 类似,我们可以考虑 Rn 中的级数。
定义9
对于级数
Σ∞k=0xk
,其中
xk∈Rn
,如果它的部分和
sk=Σki=0xi
序列收敛到
x
,那么我们就成该级数收敛到
如定理8那样, Σ∞k=0xk=x 等价于级数的元素收敛到相应 x 的元素。
应用定理10到
定理11
Rn
中的级数
Σxk
收敛,当且仅当对每个
ε>0
,存在一个
N
使得
特别地,取 p=0 ,我们可以看出如果 Σxk 收敛,那么当 k→∞ 时 xk→0 。
级数 Σxk 绝对收敛,当且仅当实级数 Σ∥xk∥ 收敛。
定理12 如果 Σxk 绝对收敛,那么 Σxk 是收敛的。
这个定理非常有用,因为当判断 Σxk 的收敛性时,我们可以判断 Σ∥xk∥ 的收敛性(利用用ratio test)。当然,即便 Σxk 是收敛的,这种判别方法可能失效,这时候就需要其他的方法来判别。
接下来我们讨论一些非常重要的判别级数收敛的方法。这里先给出一些事实,随后还会给出。
定理13
- 如果 |r|<1 ,那么级数 Σ∞n=0rn 收敛到 1/(1−r) ;如果 |r|≥1 ,那么该级数发散(不收敛)。
- 比较测试(comparison test):如果 Σ∞k=1ak 收敛, ak≥0 并且 0≤bk≤ak ,那么 Σ∞k=1bk 收敛;如果 Σ∞k=1ck 发散, ck≥0 ,并且 0≤ck≤dk ,那么 Σ∞k=1dk 发散。
- p级数测试:如果 p>1 ,那么级数 Σ∞n=1n−p 收敛;如果 p≤1 ,那么该级数发散到 ∞ (也就是说,部分和递增且没有边界)。
- 比率测试(ratio test):假设极限 limn→∞|(an+1/an)| 存在并且小于1,那么级数 Σ∞n=1an 绝对收敛;如果极限大于1,那么级数发散;如果极限等于1,那么该测试失效。
- 根号测试(root test):假设极限 limn→∞(|an|)1/n 存在且小于1,那么 Σ∞n=1an 绝对收敛;如果极限大于1,级数发散;如果级数等于1,该测试失效。
- 积分测试(integral test):如果
f
是
[1,+∞) 上的连续,非负,单调递减函数,那么 Σ∞n=1f(n) 与 ∫∞1f(x)dx 要么都收敛,要么都发散。
例1: 令 xn=(1/n2,1/n) , Σxn 收敛吗?
解: 答案为否。因为利用 (iii) ,调和级数 Σ1/n 发散。
例2: 令 ∥xn∥≤1/2n ;证明 Σxn 收敛且 ∥Σ∞0xn∥≤2 。
解:
我们验证定理11的条件,
(几何级数和的公式为
Σ∞0arn=a/(1−r)
),于是给定
ε>0
,选择一个
N
使得
因此根据上节的例2可知极限
s
也满足
例3: 判断级数 ∑∞n=1n/3n 的收敛性。
解:
我们利用比率测试方法:
所以级数收敛。
例4: 判断级数 Σ∞n=1n/(n2+1) 是否收敛。
解:
通过观察可知,对于
x≥1,f(x)=x/(x2+1)
是正且连续的函数。因为
f′(x)=(−x2+1)/(x2+1)2≤0
,所以
f
是单调递减的。
但是当 b→∞ 时, 12log((b2+1)/2)→∞ ,所以利用积分测试可知该级数发散。也可以用比较法: n/(n2+1)≥n/(n2+n2)=1/2n ,级数 (1/2)Σ1/n 是发散的,所以可得级数是发散的。