算法导论 第九章:顺序统计量(Order Statistic)

        在一个由n个元素组成的集合中,第i个顺序统计量(order statistic)即为该集合中第i小的元素。当i=1时,即为最小值;当i=n时,即为最大值;当i=L(n+1)/2」时,即为中位数(median)。求第i个顺序统计量可以定义为形式化的定义为选择问题(selection problem):

  输入:一个包含n个(不同的)的书的集合A和一个数i,1≤i≤n

  输出:元素x∈A,它恰大于A中其他的i-1个元素

该问题可以通过排序在O(nlgn)时间内解决,但是该问题可以在线性时间内求解。

方法一(以期望线性时间做选择):

类似快速排序的思想,随机选择主元对输入数组进行递归划分。然后对划分的一边进行处理即可(快速排序需要处理两边)。伪代码如下:

性能分析:


假设E(T(n)) ≤ cn ,然后用数学归纳法证之。

方法二(最坏情况线性时间的选择):

由于方法一随机选取主元并不能保证每次是最好的选择,但可以通过对输入数组的递归划分来保证每次对数组的划分是一个好的划分。步骤如下:

1)将输入数组的n个元素划分为Ln/5」,每组5个元素,且至多只有一组由剩下的n mod 5 个元素组成

2)寻找个组中的每一组的中位数。首先对每组中的元素进行插入排序,然后从排序过的序列中找出中位数。

3)对第2步中找出的个中位数,递归调用SELECT以找出其中中位数 x

4)利用修改过的PARTITION过程,按中位数的中位数x对输入的数组进行划分,让k比划分低区的元素数目多1,所以x是第k小的元素,并且有n-k个元素在划分的高区

5)如果i=k,则返回x;否则,如果i<k,则在低区递归调用SELECT以找出第i小的元素;如果i>k,则在高区中找第(i-k)个最小元素。

性能分析:

如图,阴影区域表示大于x的元素


大于(或小于)x的元素个数至少为:

在最后情况下,第5步中最多有7n/10+6个元素递归调用SELECT。

对于整个算法,可以得到递归式:

解得,

      T(n)=O(n)


两种方法完整代码如下:

#include<iostream>
#include<cstdlib>
#include<ctime>
#include<climits>
#include<iomanip>
#define N 5
using namespace std;

void Print(int *A)
{
	int n=A[0];
	for(int i=1;i<=n;i++)
	{
		cout<<setw(5)<<A[i];
		if(i%10==0)
			cout<<endl;
		} 
	cout<<endl;
	}
void getTestData(int *A,int n)
{//generate random test data
	srand((unsigned)time(NULL));
	for(int i=1;i<=n;i++)
		A[i]=rand()%100;
	A[0]=n;
	}
int *cpArr(int *a)
{
	int n=a[0];
	int *b=new int[n+1];
	for(int i=1;i<=n;i++)
		b[i]=a[i];
	b[0]=n;
	return b;
	}
/*-----------------------Randomized select in expected linear time----------------------*/
void swap(int &a,int &b)
{
	int temp;
	temp=a;
	a=b;
	b=temp;
	}
int Partition(int *A,int p,int r)
{
	int x=A[r];
	int i=p-1;
	for(int j=p;j<=r-1;j++)
		if(A[j]<x)
		{ 
			i=i+1;
			swap(A[i],A[j]);
			}
	swap(A[i+1],A[r]);
	return i+1;
	}
int Randomized_Partition(int *A,int p,int r)
{
	srand((unsigned)time(NULL));
	int i=rand()%(r-p+1)+p;
	swap(A[i],A[r]);
	return Partition(A,p,r);
	}
int  Randomized_Select(int *A,int p,int r,int i)
{//return ith smallest number
	if(p==r)
		return A[p];
	int q=Randomized_Partition(A,p,r);
	int k=q-p+1;
	if(i==k)               //the pivot value is the answer
		return A[q];
	else if(i<k)
		return Randomized_Select(A,p,q-1,i);
	else
		return Randomized_Select(A,q+1,r,i-k);
	}
/*-----------------------------------------------------------------------------*/

/*--------------------Selection in worst-case linear time----------------------*/
int Select(int *A,int p,int r,int i);
int getMidByInsertSort(int *A,int begin,int end)
{//insert sort,return the meadian of one group
	int glen=end-begin+1;   //the length of each group
	int gmid=(glen+1)/2;
	for(int i=begin+1;i<=end;i++)
		for(int j=i-1;j>=begin && A[j]>A[j+1]; j--)
			swap(A[j],A[j+1]);
	return A[gmid];
	}
int getMid(int *A,int p,int r)
{//get the median of medians value
	int length=r-p+1;
	int groups;
	int begin , end;

	if(length % N==0)    //each group contain N elements
		groups=length/N;
	else
		groups=length/N+1;

	int *mediansArr=new int[groups+1];
	for(int i=1;i<=groups ;i++)
	  {
		int begin=p+(i-1)*N;         // the beginning position of each group
		if(length%N!=0 && i==groups)//when the last groups isn't N,the end position is r
			end=r;
		else
			end=p+i*N-1;

		 mediansArr[i]=getMidByInsertSort(A,begin,end);  //medians of each group
		}
	return Select(mediansArr,1,groups,(groups+1)/2);   //find medians in medianArr,wich stores medians of each group

	}
int PartitionByMid(int *A,int p,int r,int mid)
{//exchange A[mid] with A[r] 
	 
	for(int j=p;j<r;j++)
		if(A[j]==A[mid])
	 	{ 
			swap(A[mid],A[r]);
			break;
			}

	return Partition(A,p,r);
	}
int Select(int *A,int p,int r,int i)
{
	if(p==r)
		return A[p];

	int mid=getMid(A,p,r);           //mid is the median-of-medians
	int q=PartitionByMid(A,p,r,mid); //split array A to A[p..q-1]<=mid<A[q+1..r]
	int k=q-p+1;

	if(i==k)
		return A[q];
	else if(i<k)
		return Select(A,p,q-1,i);
	else 
		return Select(A,q+1,r,i-k);
	}
/*-----------------------------------------------------------------------------*/
int main()
{	
	int n=12;
	int *A,*A1;
	int i=4;  
    cout<<"-------------Randomized-select version-----------------"<<endl;	
	cout<<"Input the total number n:";
	cin>>n;
	cout<<"Input the ith smallest's i:";
	cin>>i;
	A=new int[n+1];
	cout<<"The random test data:"<<endl;
	getTestData(A,n);
	Print(A);
	A1=cpArr(A);  //copy array A.
	int iSmallest1=Randomized_Select(A,1,n,i);   
	cout<<"The "<<i<<"th smallest is:"<<iSmallest1<<endl;
	
	cout<<"--------Select in worst-case linear time-------------"<<endl;
	Print(A1);
	int iSmallest2=Select(A1,1,n,i);
	cout<<"The "<<i<<"th smallest is:"<<iSmallest2<<endl;
        
        return 0;
	}
运行结果:


【注:若有错误,请指正~~~】





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值