Foundation of Machine Learning 笔记第五部分 (2) —— Rademacher Complexity 和 VC 维

前言

注意事项:

  1. 这个系列的文章虽然题为书本《Foundation of Machine Learning》的读书笔记,但实际我是直接对书本的部分内容进行了个人翻译,如果这个行为有不妥当的地方,敬请告知。
  2. 由于知识面限制,部分名词的翻译可能存在错误,部分难以翻译的名词保留英文原词。为了防止误导大家,在这里声明本文仅供参考。
  3. 本文基本翻译自《Foundation of Machine Learning》的3.1节。

正文

接下来的内容将关系到假设集 H 的 empirical Rademacher complexity 和与 H 相关的二元损失函数族 G ( 我的补充:如上一步所提出的,损失函数族 G 是基于假设集 H 定义的,已知假设是一个从 X 映射到 Y 的函数,而损失函数 L 是从 Y×Y 映射到 R 的函数,把上面这两个映射结合起来得到一个新的损失函数的定义 g:(X×Y)R ,用函数的形式表达,也就是 g(x,y)=L(h(x),y) 。而二元损失函数是取值只为 0 或者 1 的损失函数,本节把映射 L 定义为 1h(x)y 这个函数 ) 。

引理 3.1

H 代表一族在 {1,+1} 上取值的函数,用 G 代表一族与 H 相关的二元损失函数: G={(x,y)1h(x)y:hH} 。对于任意的在空间 X×{1,+1} 中取样的样本集 S=((x1,y1),,(xm,ym)) ,用 SX 表示这个样本集到空间 X 上的投影: SX=(x1,,xm) 。那么, G H 的 empirical Rademacher complexity 满足以下关系 ( 我的理解:注意Rademacher complexity 是一种描述函数族性质的量):

R^S(G)=12R^SX(H).(3.16)

证明 对于空间 X×{1,+1} 中的任意样本集 S=((x1,y1),,(xm,ym)) ,通过定义, G 的 empirical Rademacher complexity 可以写成:

R^S(G)====Eσ[suphH1mi=1mσi1h(xi)yi]Eσ[suphH1mi=1mσi1yih(xi)2]12Eσ[suphH1mi=1mσiyih(xi)](σi0)12Eσ[suphH1mi=1mσih(xi)]=12RSX(H),
这里我们使用了两个事实: 1h(xi)yi=(1yih(xi))/2 ,以及对于固定的 yi{1,+1} σi yiσi 是相同的分布 ( 都是在 {1,+1} 上取值、期望为 0 的均匀分布 )。证毕。

值得注意的是,通过取两边的数学期望,这个引理意味着对于任意 m1 Rm(G)=12Rm(H) 。这种 empirical Rademacher complexity 和 average Rademacher complexity 之间的关系可以用以引出二分类问题使用了假设集 H 的 Rademacher complexity 的泛化上限。

定理 3.2 Rademacher complexity bounds ——二元分类

H 表示一族从 {1,+1} 中取值的函数,用 D 表示输入空间 X 上的分布。那么,对于任意 δ>0 ,下列不等式在一个从 D 中抽取 m 个样本构成的样本集 S 上,对于任意假设 hH,至少有 1δ 的概率成立:

R(h)andR(h)R^(h)+Rm(H)+log1δ2mR^(h)+R^m(H)+3log1δ2m.(3.17)(3.18)

证明 由定理 3.1 和引理 3.1 直接得证。要注意的是,根据上述定义的二元损失函数 g(z)=1h(xi)yi ,定理 3.1 中的 E[g(z)] 等于泛化误差 R(h) ,同理, 1mmi=1g(zi) 这一项等于经验误差 R^(h)

这个定理为二元分类提供了基于 Rademacher complexity 的泛化上限。注意 (3.18) 中的上限是只依赖于样本数据的:empirical Rademacher complexity R^m(H) 是关于某个从 D 中抽取出来的特定样本集的函数。因此,只要我们能计算 R^m(H),这个上限完全可以算出。但是我们要怎样才能算出 empirical Rademacher complexity 呢?通过 σi σi 是相同分布这个事实,我们可以写出

R^m(H)=Eσ[suphH1mi=1mσih(xi)]=Eσ[infhH1mi=1mσih(xi)].
那么,对于固定的值 σ ,计算 infhH1mmi=1σih(xi) 等价于一个经验风险最小化问题 ( empirical risk minimization ),而这个问题对于某些假设集来说是计算上很复杂的问题 ( 因为需要把每一个假设都带进去试才能得到最小值,所以这是个 NP 难问题 )。因此, R^m(H) 是一个计算复杂的问题。在下一部分中,我们将把 Rademacher complexity 联系到组合测度 ( combinatorial measure,可能是测度论中的概念 ) 上去,而组合测度更加容易计算。

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值