Rademacher复杂度(Rademacher Complexity)是在学习理论中用于衡量函数类复杂度的一种工具,特别是在评估机器学习模型泛化能力时。它提供了一种量化学习算法可能过拟合数据的程度的方法。Rademacher复杂度定义了函数类在给定数据集上的随机化复杂度。
定义
设 ( H \mathcal{H} H) 是一个假设空间, ( S = ( x 1 , . . . , x n ) ) (S = (x_1, ..., x_n)) (S=(x1,...,xn)) 是从分布 ( P ) (P) (P)中独立同分布( i . i .