组合数学-Chapter VII: 容斥原理

Chapter VII: 容斥原理

在本章中, 我们将介绍一种常用的经典组合学技巧–容斥原理. 虽然在最简单的情形下, 它几乎是显然的, 但这一方法的强大体现在利用它解决涉及可列个元素的情形时.下面, 我们以几个简单的例子为引, 逐步导出并介绍容斥原理的基本算法, 公式和应用.

[例]

方程
∑ i = 1 4 x i = 100 \sum_{i=1}^{4}x_i = 100 i=14xi=100

的满足
x i ⩾ 0 , i ∈ [ 4 ] x_i \geqslant 0, i \in [4] xi0,i[4]
的整数解组数为
( 100 + 4 − 1 4 − 1 ) . \binom{100 + 4 - 1}{4 - 1}. (41100+41).

原方程满足
x 1 , x 2 , x 4 ⩾ 0 , 0 ⩽ x 3 ⩽ 7 x_1,x_2,x_4\geqslant 0, 0\leqslant x_3\leqslant 7 x1,x2,x40,0x37
的整数解组数为
( 103 3 ) − ( 95 3 ) . \binom{103}{3} - \binom{95}{3}. (3103)(395).

原方程满足
x 1 , x 2 ⩾ 0 , 0 ⩽ x 3 ⩽ 7 , 0 ⩽ x 4 ⩽ 10 x_1,x_2\geqslant 0, 0\leqslant x_3\leqslant 7, 0\leqslant x_4\leqslant 10 x1,x20,0x37,0x410
的整数解组数为
( 103 3 ) − ( ( 95 3 ) + ( 92 3 ) ) + ( 85 3 ) \binom{103}{3} - (\binom{95}{3} + \binom{92}{3}) + \binom{85}{3} (3103)((395)+(392))+(385)

分别记条件:
x i ⩾ 0 , i ∈ [ 4 ] x_i \geqslant 0, i \in [4] xi0,i[4]
x 1 , x 2 , x 4 ⩾ 0 , 0 ⩽ x 3 ⩽ 7 x_1,x_2,x_4\geqslant 0, 0\leqslant x_3\leqslant 7 x1,x2,x40,0x37
x 1 , x 2 ⩾ 0 , 0 ⩽ x 3 ⩽ 7 , 0 ⩽ x 4 ⩽ 10 x_1,x_2\geqslant 0, 0\leqslant x_3\leqslant 7, 0\leqslant x_4\leqslant 10 x1,x20,0x37,0x410
A A A, B B B, X X X;

我们可以得到如下结论:
∣ X ∣ − ∣ A ∣ − ( ∣ B ∣ − ∣ A ∩ B ∣ ) = ∣ X ∣ − ( ∣ A ∣ + ∣ B ∣ ) + ∣ A ∩ B ∣ . |X| - |A| - (|B| - |A\cap B|) = |X| - (|A| + |B|) + |A \cap B|. XA(BAB)=X(A+B)+AB.
也就是, 在找出满足条件 X X X 的所有整数解的个数的时候, 我们需要首先从全体 ∣ X ∣ |X| X 中除去满足条件 A A A B B B 的整数解个数, 最后再将这一过程中多减去的个数 ∣ A ∩ B ∣ |A\cap B| AB 重新补回去.


[例]

假设集合 X X X 由组合数学课中 63 63 63 名学生组成. 假设其中共有 51 51 51 人, 计算机专业的学生有 47 47 47 人, 计算机专业的男学生有 45 45 45 人. 那么, 不属于计算机专业的女学生人数是多少?

类似于前一题的做法, 我们分别假设 A , B , X A, B, X A,B,X 为:

  • 47 47 47 个计算机专业的学生
  • 51 51 51 个男学生
  • 所有的 63 63 63 个学生

利用集合的基本知识和运算, 我们知道: A ∩ B A\cap B AB 45 45 45 个 属于计算机专业的男学生, 而 A ∪ B A\cup B AB 的补集即为我们要求的人数. 故有
∣ X \ ( A ∪ B ) ∣ = ∣ X ∣ − ∣ A ∣ − ( ∣ B ∣ − ∣ A ∩ B ∣ ) = ∣ X ∣ − ( ∣ A ∣ + ∣ B ∣ ) + ∣ A ∩ B ∣ . |X\backslash (A\cup B)| = |X| - |A| - (|B|-|A\cap B|) = |X| - (|A| + |B|) + |A\cap B|. X\(AB)=XA(BAB)=X(A+B)+AB.


从上述的两个例子中我们可以看出, 对于这一类 “需要求出满足或不满足某个或某些性质的元素的个数” 问题, 在涉及两个性质的情形下是存在某种通用公式的. 我们自然会考虑, 当问题涉及三个甚至更多性质时, 如果还存在通用公式, 它的结构又如何呢?

我们现在考虑涉及三个性质的情况. 这三个性质分别用集合 A , B , C A, B, C A,B,C 表示, 并记全集为 X X X. 利用集合的运算和 V e n n Venn Venn 图, 不难得出: 同时不满足这三个性质的元素个数为
∣ X ∣ − ( ∣ A ∣ + ∣ B ∣ + ∣ C ∣ ) + ( ∣ A ∩ B ∣ + ∣ A ∩ C ∣ + ∣ B ∩ C ∣ ) − ∣ A ∩ B ∩ C ∣ . |X| - (|A| + |B| + |C|) + (|A\cap B| + |A\cap C| + |B\cap C|) - |A\cap B\cap C|. X(A+B+C)+(AB+AC+BC)ABC.

也就是说:

设集合 X X X, P 1 , P 2 , P 3 P_1,P_2,P_3 P1,P2,P3 为三个性质. 则集合 X X X 中三个性质都不满足的元素个数为

∣ X ∣ − ( N ( { 1 } ) + N ( { 2 } ) + N ( { 3 } ) ) + ( N ( { 1 , 2 } ) + N ( { 2 , 3 } ) + N ( { 1 , 3 } ) ) − N ( { 1 , 2 , 3 } ) |X| - (N(\{1\}) + N(\{2\}) + N(\{3\})) + (N(\{1,2\}) + N(\{2,3\}) + N(\{1,3\})) - N(\{1,2,3\}) X(N({1})+N({2})+N({3}))+(N({1,2})+N({2,3})+N({1,3}))N({1,2,3})


∣ X ∣ − ∑ i = 1 3 N ( { i } ) + ∑ 1 ⩽ i < j ⩽ 3 N ( { i , j } ) + N ( { 1 , 2 , 3 } ) . |X| - \sum_{i=1}^{3}N(\{i\}) + \sum_{1\leqslant i<j\leqslant3}N(\{i,j\}) + N(\{1,2,3\}). Xi=13N({i})+1i<j3N({i,j})+N({1,2,3}).

相应地, 我们还可以将这一公式推广到具有 4 4 4 个及以上性质的情况.

定理7.1 (容斥原理)

X X X 为有限集, 集合 P = { P 1 , P 2 , ⋯   , P n } \mathscr{P} = \{P_1,P_2,\cdots,P_n\} P={P1,P2,,Pn} 为一组由各种性质组成的集合. 则 X X X 中不满足 P \mathscr{P} P 中每一个性质的元素的个数为
∑ S ⊆ [ m ] ( − 1 ) ∣ S ∣ N ( S ) . \sum_{S\subseteq [m]}(-1)^{|S|}N(S). S[m](1)SN(S).

[证明]

我们对 m m m 应用数学归纳法证明这一定理.

m = 1 m = 1 m=1 时:
∑ S ⊆ [ m ] ( − 1 ) ∣ S ∣ N ( S ) = N ( ϕ ) − N ( { 1 } ) , \sum_{S\subseteq [m]}(-1)^{|S|}N(S) = N(\phi) - N(\{1\}), S[m](1)SN(S)=N(ϕ)N({1}),
结论成立.

假设这一结论对 m ⩽ k m\leqslant k mk 均成立. ( k k k 为某个大于 1 1 1 的正整数)

m = k + 1 m = k + 1 m=k+1 时:

我们记 X \ X 1 X\backslash X_1 X\X1 为满足性质 P k + 1 P_{k+1} Pk+1 的元素组成的集合, X 1 X_1 X1 为满足性质 P 1 , ⋯   , P k P_1, \cdots, P_k P1,,Pk 而不满足性质 P k + 1 P_{k+1} Pk+1的元素组成的集合.


由归纳假设:
∣ X 1 ∣ = ∑ S ⊆ [ k ] ( − 1 ) ∣ S ∣ N ( S ) . |X_1| = \sum_{S\subseteq [k]}(-1)^{|S|}N(S). X1=S[k](1)SN(S).
我们所要求的是 X 1 X_1 X1 中不满足性质 P k + 1 P_{k+1} Pk+1 的元素个数. 也就是:

∑ S ⊆ [ 1 ] N ( S ) = ∣ X 1 ∣ − ∣ { x ∈ X 1 :    x    s a t i s f i e s    P k + 1 } ∣ = ∑ S 1 ⊆ [ k ] ( − 1 ) ∣ S 1 ∣ N ( S 1 ) − ∑ S 1 ⊆ [ k ] ( − 1 ) ∣ S 1 ∣ N ( S 1 ∪ { k + 1 } ) = ∑ T ⊆ [ k + 1 ] ( − 1 ) ∣ T ∣ N ( T ) . \sum_{S\subseteq [1]} N(S) = |X_1| - |\{x\in X_1: ~~ x~~satisfies ~~ P_{k+1}\}| \\ = \sum_{S_1\subseteq [k]}(-1)^{|S_1|}N(S_1) - \sum_{S_1\subseteq [k]}(-1)^{|S_1|}N(S_1\cup \{k + 1\}) \\ = \sum_{T\subseteq [k+1]}(-1)^{|T|}N(T). S[1]N(S)=X1{xX1:  x  satisfies  Pk+1}=S1[k](1)S1N(S1)S1[k](1)S1N(S1{k+1})=T[k+1](1)TN(T).

[Assignment]

求等式
∑ i = 1 5 x i = 60 \sum_{i=1}^{5}x_i = 60 i=15xi=60
满足条件
x 1 ⩾ 1 , 2 ⩽ x 2 ⩽ 7 , 0 ⩽ x 3 ⩽ 6 , 3 ⩽ x 4 ⩽ 8 , x 5 ⩾ 5 x_1\geqslant 1, 2\leqslant x_2\leqslant 7, 0\leqslant x_3\leqslant 6, 3\leqslant x_4 \leqslant 8, x_5\geqslant 5 x11,2x27,0x36,3x48,x55
的整数解组数.

[解]


* P : x 1 ⩾ 1 , x 2 ⩾ 2 , x 3 ⩾ 0 , x 4 ⩾ 3 , x 5 ⩾ 5. P: x_1\geqslant 1, x_2\geqslant 2, x_3\geqslant 0,x_4\geqslant 3, x_5\geqslant5. P:x11,x22,x30,x43,x55.

* P 1 : x 2 ⩾ 8. P_1: x_2\geqslant 8. P1:x28.

* P 2 : x 3 ⩾ 7. P_2: x_3\geqslant 7. P2:x37.

* P 3 : x 4 ⩾ 9. P_3: x_4\geqslant 9. P3:x49.

. . . . . . ...... ......

并记 X 1 X_1 X1 为满足题目条件的整数解所组成的集合.

知如下结论:

∣ P ∣ = ( 53 4 ) , ∣ P 1 ∣ = ( 47 4 ) , ∣ P 2 ∣ = ( 46 4 ) , ∣ P 3 ∣ = ( 47 4 ) , ∣ P 1 , 2 ∣ = ( 40 4 ) , ∣ P 1 , 3 ∣ = ( 43 4 ) , ∣ P 2 , 3 ∣ = ( 40 4 ) , ∣ P 1 , 2 , 3 ∣ = ( 34 4 ) . |P| = \binom{53}{4},\\ |P_1| = \binom{47}{4}, \\ |P_2| = \binom{46}{4}, \\ |P_3| = \binom{47}{4}, \\ |P_{1,2}| = \binom{40}{4}, \\ |P_{1,3}| = \binom{43}{4}, \\ |P_{2,3}| = \binom{40}{4}, \\ |P_{1,2,3}| = \binom{34}{4}. P=(453),P1=(447),P2=(446),P3=(447),P1,2=(440),P1,3=(443),P2,3=(440),P1,2,3=(434).

由容斥原理:
∣ X 1 ∣ = ∣ P ∣ − ( ∣ P 1 ∣ + ∣ P 2 ∣ + ∣ P 3 ∣ ) + ( P 1 , 2 + P 1 , 3 + P 2 , 3 ) − P 1 , 2 , 3 = ( 53 4 ) − ( ( 47 4 ) + ( 46 4 ) + ( 47 4 ) ) + ( ( 40 4 ) + ( 43 4 ) + ( 40 4 ) ) − ( 34 4 ) . |X_1| = |P| - (|P_1| + |P_2| + |P_3|) + (P_{1,2} + P_{1,3} + P_{2,3}) - P_{1,2,3} \\ =\binom{53}{4} - (\binom{47}{4} + \binom{46}{4} + \binom{47}{4}) + (\binom{40}{4} + \binom{43}{4} + \binom{40}{4}) - \binom{34}{4}. X1=P(P1+P2+P3)+(P1,2+P1,3+P2,3)P1,2,3=(453)((447)+(446)+(447))+((440)+(443)+(440))(434).


[例]

要求将 15 15 15 张不同的彩票分发给 4 4 4 个人, 并且要求每人至少拿到一张. 求满足这一条件的分发方法的种数.

我们将这些彩票分别标记为 1 , 2 , ⋯   , 15 1,2,\cdots, 15 1,2,,15, 并将收到彩票的人标记为 1 , 2 , 3 , 4 1,2,3,4 1,2,3,4. 这样, 每一种分发方式实际上等价于一个从 [ 15 ] [15] [15] [ 4 ] [4] [4] 的单射.

假设 n , m n, m n,m 为满足 n ⩾ m n\geqslant m nm 的正整数. 用 S ( n , m ) S(n,m) S(n,m) 记从 [ n ] [n] [n] [ m ] [m] [m] 的映射总数.

显见, 从 [ n ] [n] [n] [ m ] [m] [m] 的双射总数为 m n m^n mn, 也就是长为 n n n m m m-串的种数.

假设 X X X 为所有从 [ 15 ] [15] [15] [ 4 ] [4] [4] 的双射组成的集合. 对每个 i ∈ [ m ] i \in [m] i[m], 记 P i P_{i} Pi 为一个性质: i i i 不是任何一个 [ n ] [n] [n] 中整数的像.

这样的话, S ( n , m ) S(n,m) S(n,m) 就等于: 不满足所有的性质 P 1 , P 2 , ⋯   , P m P_1,P_2,\cdots,P_m P1,P2,,Pm 的, X X X 中元素的总数.


引理7.1

对每个 S ⊆ [ m ] S\subseteq [m] S[m] ∣ S ∣ = k |S| = k S=k, N ( S ) = ( m − k ) n N(S) = (m - k)^n N(S)=(mk)n.

[证明]

f f f X X X 中满足每一个性质 P i ,    i ∈ S P_i, ~~ i\in S Pi,  iS. 则 f f f 唯一地和一个长为 n n n [ m ] \ S [m]\backslash S [m]\S-串所对应.
因此,有 N ( S ) = ( m − k ) n N(S) = (m-k)^n N(S)=(mk)n.


定理7.2

S ( n , m ) = ∑ k = 0 m ( − 1 ) k ( m k ) ( m − k ) n . S(n,m) = \sum_{k=0}^{m}(-1)^k\binom{m}{k}(m-k)^n. S(n,m)=k=0m(1)k(km)(mk)n.

[证明]

X X X 为所有从 [ n ] [n] [n] 映到 [ m ] [m] [m] 的双射所组成的集合. 对每一个 i ∈ [ m ] i\in [m] i[m], 设 P i P_i Pi 为一个性质: i i i 不是在这个双射中与任何 [ n ] [n] [n] 中整数所对应的像.

根据容斥原理:
S ( n , m ) = ∑ S ⊆ [ m ] ( − 1 ) ∣ S ∣ N ( S ) = ∑ k = 0 m ( − 1 ) k ∑ s ⊆ [ m ] ,    ∣ S ∣ = k ( m − k ) n = ∑ k = 0 m ( − 1 ) k ( m k ) ( m − k ) n . S(n,m) = \sum_{S\subseteq [m]}(-1)^{|S|}N(S) \\ = \sum_{k=0}^{m}(-1)^k\sum_{s\subseteq [m] ,~~|S| = k}(m-k)^n \\ =\sum_{k=0}^{m}(-1)^k\binom{m}{k}(m-k)^n. S(n,m)=S[m](1)SN(S)=k=0m(1)ks[m],  S=k(mk)n=k=0m(1)k(km)(mk)n.

[Assignment]

  1. How many positive integers less than or equal to 100 are divisible by 2? How many positive integers less than or equal to 100 are divisible by 5? Use this information to determine how many positive integers less than or equal to 100 are divisible by neither 2 nor 5.

[Solution]

By the knowledge of Number Theory:

there are 50 50 50 positive integers which is divisible by 2;

there are 20 20 20 positive integers which is divisible by 5.

Define Property P 1 , P 2 P_1,P_2 P1,P2 as:

P 1 P_1 P1: the number is not divisible by 2.

P 2 P_2 P2: the number is not divisible by 5.

From Inclusion-Exclusion Principle, we know that the number of integers which meet neither of these two properties is:
100 − ∣ P 1 ∣ − ∣ P 2 ∣ + ∣ P 1 ∩ P 2 ∣ = 100 − 50 − 20 + 10 = 40. 100 - |P_1| - |P_2| + |P_{1}\cap P_{2}| = 100-50-20+10 = 40. 100P1P2+P1P2=1005020+10=40.


  1. How many positive integers less than or equal to 100 are divisible by none of 2, 3, and 5?

[Solution]

By the knowledge of Number Theory:

there are 50 50 50 positive integers which is divisible by 2;

there are 33 33 33 positive integers which is divisible by 3;

there are 20 20 20 positive integers which is divisible by 5.

Define Property P 1 , P 2 P_1,P_2 P1,P2 as:

P 1 P_1 P1: the number is not divisible by 2.

P 2 P_2 P2: the number is not divisible by 3.

P 3 P_3 P3: the number is not divisible by 5.

From Inclusion-Exclusion Principle, we know that the number of integers which meet neither of these two properties is:
100 − ( ∣ P 1 ∣ + ∣ P 2 ∣ + ∣ P 3 ) + ( ∣ P 1 , 2 ∣ + ∣ P 1 , 3 ∣ + ∣ P 2 , 3 ∣ ) − ∣ P 1 , 2 , 3 ∣ = 100 − 103 + 32 − 3 = 24. 100 - (|P_1| + |P_2| + |P_3) + (|P_{1,2}| + |P_{1,3}| + |P_{2,3}|) - |P_{1,2,3}| \\ = 100-103 + 32 -3 = 24. 100(P1+P2+P3)+(P1,2+P1,3+P2,3)P1,2,3=100103+323=24.


  1. How many integer solutions are there to the equation
    x 1 + x 2 + x 3 + x 4 = 32 x_1 + x_2 + x_3 + x_4 = 32 x1+x2+x3+x4=32
    with
    0 ≤ x i ≤ 10 0 ≤ x_i ≤ 10 0xi10
    for
    i = 1 , 2 , 3 , 4 ? i = 1, 2, 3, 4? i=1,2,3,4?

[Solution]

Assume Property P i P_i Pi stands for number i i i is greater than 11 11 11. Immediately we have:

∣ P 1 ∣ = ∣ P 2 ∣ = ∣ P 3 ∣ = ∣ P 4 ∣ = ( 24 3 ) . |P_1| = |P_2| = |P_3| = |P_4| = \binom{24}{3}. P1=P2=P3=P4=(324).

∣ P 1 , 2 ∣ = ∣ P 1 , 3 ∣ = ∣ P 1 , 4 ∣ = ∣ P 2 , 3 ∣ = ∣ P 2 , 4 ∣ = ∣ P 3 , 4 ∣ = ( 13 3 ) . |P_{1,2}| = |P_{1,3}| = |P_{1,4}| = |P_{2,3}| = |P_{2,4}| = |P_{3,4}| = \binom{13}{3}. P1,2=P1,3=P1,4=P2,3=P2,4=P3,4=(313).

∣ P 1 , 2 , 3 ∣ = ∣ P 1 , 2 , 4 ∣ = ∣ P 2 , 3 , 4 ∣ = ∣ P 1 , 2 , 3 , 4 ∣ = 0 |P_{1,2,3}| = |P_{1,2,4}| = |P_{2,3,4}| = |P_{1,2,3,4}| = 0 P1,2,3=P1,2,4=P2,3,4=P1,2,3,4=0.

From the Inclusion-Exclusion Principle: we know that the solution which does not meet property 1 , 2 , 3 , 4 1,2,3,4 1,2,3,4 is:
( 35 3 ) − 4 ⋅ ( 24 3 ) + 6 ⋅ ( 13 3 ) − 3 ⋅ 0 + 0. \binom{35}{3} - 4\cdot \binom{24}{3} + 6\cdot \binom{13}{3} - 3\cdot 0 + 0. (335)4(324)+6(313)30+0.


  1. How many integer solutions are there to the inequality
    y 1 + y 2 + y 3 + y 4 < 184 y_1 + y_2 + y_3 + y_4 < 184 y1+y2+y3+y4<184
    with
    y 1 > 0 , 0 < y 2 ≤ 10 , 0 ≤ y 3 ≤ 17 y_1 > 0, 0 < y_2 ≤ 10, 0 ≤ y_3 ≤ 17 y1>0,0<y210,0y317
    and
    0 ≤ y 4 < 19 ? 0 ≤ y_4 < 19? 0y4<19?

[Solution]

Assume P i , i ∈ [ 3 ] P_i, i\in [3] Pi,i[3] stands for y 2 ⩾ 11 ,    y 3 ⩾ 18 ,    y 4 ⩾ 20 y_2 \geqslant 11, ~ ~ y_3 \geqslant 18,~~ y_4\geqslant 20 y211,  y318,  y420.

Also, we stipulate that ( i j ) = 0 \binom{i}{j} = 0 (ji)=0, if i < j i<j i<j.

for every i i i in [ 184 − 1 ] [184-1] [1841]:

∣ P 1 ∣ = ( i − 9 3 ) |P_{1}| = \binom{i-9}{3} P1=(3i9)

∣ P 2 ∣ = ( i − 17 3 ) |P_{2}| = \binom{i-17}{3} P2=(3i17)

∣ P 3 ∣ = ( i − 19 3 ) |P_{3}| = \binom{i-19}{3} P3=(3i19)

∣ P 1 , 2 ∣ = ( i − 27 3 ) |P_{1,2}| = \binom{i-27}{3} P1,2=(3i27)

∣ P 1 , 3 ∣ = ( i − 29 3 ) |P_{1,3}| = \binom{i-29}{3} P1,3=(3i29)

∣ P 2 , 3 ∣ = ( i − 37 3 ) |P_{2,3}| = \binom{i-37}{3} P2,3=(3i37)

∣ P 1 , 2 , 3 ∣ = ( i − 47 3 ) |P_{1,2,3}| = \binom{i-47}{3} P1,2,3=(3i47)

Immediately, we know that for every i i i in [ 183 ] [183] [183]:
The number of integer solutions which meet the requirement is
( i 3 ) − ( ( i − 9 3 ) + ( i − 17 3 ) + ( i − 19 3 ) ) + ( ( i − 27 3 ) + ( i − 29 3 ) + ( i − 37 3 ) ) − ( i − 47 3 ) . \binom{i}{3} - (\binom{i-9}{3} + \binom{i-17}{3} + \binom{i-19}{3}) + (\binom{i-27}{3} + \binom{i-29}{3} + \binom{i-37}{3}) - \binom{i-47}{3}. (3i)((3i9)+(3i17)+(3i19))+((3i27)+(3i29)+(3i37))(3i47).

So, the total number of required integer solution is:

∑ i = 2 183 { ( i 3 ) − ( ( i − 9 3 ) + ( i − 17 3 ) + ( i − 19 3 ) ) + ( ( i − 27 3 ) + ( i − 29 3 ) + ( i − 37 3 ) ) − ( i − 47 3 ) } . \sum_{i=2}^{183}\{\binom{i}{3} - (\binom{i-9}{3} + \binom{i-17}{3} + \binom{i-19}{3}) + (\binom{i-27}{3} + \binom{i-29}{3} + \binom{i-37}{3}) - \binom{i-47}{3}\}. i=2183{(3i)((3i9)+(3i17)+(3i19))+((3i27)+(3i29)+(3i37))(3i47)}.


乱序排列问题:

定义7.1 (乱序排列, 错排)

X X X [ n ] [n] [n] 上全部排列所组成的集合. 若排列 σ ∈ X \sigma \in X σX 满足: σ ( i ) ≠ i ,     i ∈ [ n ] \sigma(i)\neq i, ~~~ i \in [n] σ(i)=i,   i[n], 称其为一个错排 (dearrangement) .

关于乱序排列问题, 我们最关心的是, 给定 n n n, [ n ] [n] [n] 的全部乱序排列种数.

实际上, 我们可以通过利用容斥原理来推导出乱序排列公式.

i ∈ [ n ] i\in [n] i[n], 设 P i P_i Pi 为性质: σ ( i ) = i , σ ∈ X \sigma(i) = i, \sigma \in X σ(i)=i,σX.

因此, 求 [ n ] [n] [n] 的全部乱序排列种数问题即转化为:
关于 [ n ] [n] [n] 的排列中, 有多少种排列不满足所有性质 P 1 , P 2 , ⋯   , P n P_1,P_2,\cdots, P_n P1,P2,,Pn?
由容斥原理我们立即得到: 所要求的种数为
∑ S ⊆ [ n ] ( − 1 ) ∣ S ∣ N ( S ) . \sum_{S\subseteq [n]}(-1)^{|S|}N(S). S[n](1)SN(S).


S S S [ n ] [n] [n] 的子集, 并且设 ∣ S ∣ = k |S| = k S=k. 则 N ( S ) N(S) N(S) 为: 对每个 i ∈ S i \in S iS, 满足 σ ( i ) = i \sigma(i) = i σ(i)=i 的排列的个数, 数值上等于 ( n − k ) ! (n-k)! (nk)!.

定理7.3

对每个正整数 n n n, 关于 [ n ] [n] [n] 的乱序排列种数为
∑ k = 0 n ( − 1 ) k ( n k ) ( n − k ) ! . \sum_{k = 0}^{n}(-1)^{k}\binom{n}{k}(n-k)!. k=0n(1)k(kn)(nk)!.


基于上文的定义, 再设 X X X 是有限的, P 1 , P 2 , ⋯   , P m P_1,P_2,\cdots, P_m P1,P2,,Pm 为数个性质, 并且令 k ∈ [ m ] k\in [m] k[m]. 则 X X X 中恰好满足 P 1 , P 2 , ⋯   , P m P_1,P_2,\cdots, P_m P1,P2,,Pm 中的 k k k 个性质的元素数量是多少?

对于 k ∈ [ m ] k \in [m] k[m], 定义
C k = ∑ S ⊂ [ m ] ,    ∣ S ∣ = k N ( S ) . C_{k} = \sum_{S\subset [m], ~~|S| = k}N(S). Ck=S[m],  S=kN(S).
可知:

{ C 1 = N 1 + N 2 + ⋯ + N m C 2 = ∑ 1 ⩽ i < j ⩽ m N ( { i , j } ) ⋮ C m = N ( [ m ] \begin{cases} C_1 = N_1 + N_2 + \cdots + N_{m} \\ C_2 = \sum_{1\leqslant i<j\leqslant m}N(\{i,j\}) \\ \vdots \\ C_{m} = N([m]\end{cases} C1=N1+N2++NmC2=1i<jmN({i,j})Cm=N([m]

定理7.4

X X X 为有限集, P 1 , P 2 , ⋯   , P m P_1,P_2,\cdots, P_m P1,P2,,Pm m m m 个性质, 并且令 k ∈ [ m ] k\in [m] k[m]. 则 X X X 中恰好满足 P 1 , P 2 , ⋯   , P m P_1,P_2,\cdots, P_m P1,P2,,Pm 中的 k k k 个性质的元素数量 q q q 为:
q = ∑ m − k i = 0 ( − 1 ) i ( k + i i ) C k + i .                  ( ∗ ) q = \sum_{m-k}^{i=0}(-1)^{i}\binom{k+i}{i}C_{k+i}. ~~~~~~~~~~~~~~~~(*) q=mki=0(1)i(ik+i)Ck+i.                ()

[验证性证明]

x ∈ X x \in X xX.

*若 x x x 满足少于 k k k 个性质, 则 x x x 不会被计入 ( ∗ ) (*) () 右端.

*若 x x x 恰好满足 k k k 个性质, 则 x x x 恰好被计入 ( ∗ ) (*) () 一次.

*设 x x x 满足 k + j k + j k+j 个性质, j ⩾ 1 j\geqslant 1 j1, 记所满足的性质为 P 1 , P 2 , ⋯   , P k + j P_1,P_2,\cdots, P_{k+j} P1,P2,,Pk+j.

根据定义, x x x 不会被计入 q q q 中, 但当 S S S 包含了 [ k + j ] [k+j] [k+j] 中的 k + i k+i k+i 个元素, 0 ⩽ i ⩽ j 0\leqslant i\leqslant j 0ij 时, x x x 会被计入 N ( S ) N(S) N(S) 中恰好一次. 而这样的情况会在 C k + j C_{k+j} Ck+j 中被记录 ( k + j k + i ) \binom{k+j}{k+i} (k+ik+j) 次.

现在, 有
∑ i = 0 j ( − 1 ) i ( k + i i ) ( k + j k + i ) = ( k + j k ) + ∑ i = 1 j ( − 1 ) i ( k + i i ) ( k + j k + i ) = ( k + j k ) + ∑ i = 1 j ( − 1 ) i ( k + j k ) ( j i ) = ( k + j k ) ( 1 + ∑ i = 1 j ( − 1 ) i ( j i ) ) = ( k + j k ) ( 1 − 1 ) j = 0. \sum_{i=0}^{j}(-1)^{i}\binom{k+i}{i}\binom{k+j}{k+i} \\ =\binom{k+j}{k} + \sum_{i=1}^{j}(-1)^{i}\binom{k+i}{i}\binom{k+j}{k+i} \\ =\binom{k+j}{k} + \sum_{i=1}^{j}(-1)^{i}\binom{k+j}{k}\binom{j}{i} \\ =\binom{k+j}{k}(1 + \sum_{i=1}^{j}(-1)^{i}\binom{j}{i}) \\ = \binom{k+j}{k}(1-1)^{j} = 0. i=0j(1)i(ik+i)(k+ik+j)=(kk+j)+i=1j(1)i(ik+i)(k+ik+j)=(kk+j)+i=1j(1)i(kk+j)(ij)=(kk+j)(1+i=1j(1)i(ij))=(kk+j)(11)j=0.

因为这样的 x x x ( ∗ ) (*) () 右侧被计数的次数为
∑ i = 0 m − k ( − 1 ) i ( k + i k ) C k + i = ∑ i = 0 j ( − 1 ) i ( k + i i ) ( k + j k + i ) , \sum_{i=0}^{m-k}(-1)^{i}\binom{k+i}{k}C_{k+i} = \sum_{i=0}^{j}(-1)^{i}\binom{k+i}{i}\binom{k+j}{k+i}, i=0mk(1)i(kk+i)Ck+i=i=0j(1)i(ik+i)(k+ik+j),

故综上所述: 原等式成立.

实际上: 
∑ i = 0 m − k ( − 1 ) i ( k + i i ) C k + i = ∑ i = 0 m − k ( − 1 ) i ( ( k + i j ) ∑ S ∈ [ m ] ,     ∣ S = k + i N ( S ) ) . \sum_{i=0}^{m-k}(-1)^{i}\binom{k+i}{i}C_{k+i} = \sum_{i=0}^{m-k}(-1)^{i}(\binom{k+i}{j}\sum_{S\in [m], ~~~ |S = k+i}N(S)). i=0mk(1)i(ik+i)Ck+i=i=0mk(1)i((jk+i)S[m],   S=k+iN(S)).

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值