组合数学-容斥原理

hdu GCD

题意:求gcd(x,y)==k个数,其中x属于[1,b],y属于[1,d],其中x=5,y=7与x=7,y=5,是一样的。

思路:求x在[1,b],y在[1,d],gcd(x,y)=k的个数

           就是求x在[1,b/k],y在[1,d/k],gcd(x,y)==1的个数

不妨设b<d;i在[1,b/k]时,与其互素的数的个数就是欧拉函数,所以在[1,b/k]为phi[i]+phi[i1]+···

当i在[b/k+1,d/k]内求区间[1,b/k]内与其互素的数的个数,先求出该区间内与他不互素的数的个数即i的素因子的组合,利用容斥原理求解找出[1,b/k]中可以被i的每个质因子整除的数的个数求和,减去可以被其任意两个质因子整除的数的个数,加上可以被其任意三个质因子整除的数的个数。。。。。。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<iomanip>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
const int maxn=1000005;
int prim[maxn+5];
ll f[maxn+5];
ll phi[maxn+5];
void init()
{
    for(int i=1;i<maxn;i++)
        phi[i]=i;
    for(int i=2;i<maxn;i+=2)
        phi[i]>>=1;
    for(int i=3;i<maxn;i+=2)
    {
        if(phi[i]==i)
        {
            for(int j=i;j<maxn;j+=i)
                phi[j]=phi[j]-phi[j]/i;
        }
    }
    //递推法求欧拉函数
    f[1]=1;
    for(int i=2;i<maxn;i++)
        f[i]=f[i-1]+phi[i];
}
ll solve(int n,int r)
{
    int num=0;
    for(int i=2;i<=sqrt(n);i++)
    {
        if(n%i==0)
        {
            prim[num++]=i;
            while(n%i==0)
                n/=i;
        }
    }
    if(n>1)
        prim[num++]=n;
    //对n分解素因子,num是n的素因子的个数
    ll sum=0;
    for(int msk=1;msk<(1<<num);msk++)
    {//(1<<sum)是一个长为num的二进制,msk通过从1到(1<<num)循环可以枚举这个二进制的每一种排列情况
        ll mult=1;
        int bits=0;
        for(int i=0;i<num;i++)
        {
            if((1<<i)&msk)//表示的是msk二进制的第i位为1
            {
                bits++;
                mult*=prim[i];
            }
        }
        ll cur=r/mult;
        if(bits&1)
            sum+=cur;
        else
            sum-=cur;
    }
    return r-sum;
}
int main()
{
    int t,a,b,c,d,i,k,ca;
    ll sum;
    scanf("%d",&t);
    ca=0;
    init();
    while(t--)
    {
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        if(k==0)
        {
            printf("Case %d: %d\n",++ca,0);
            continue;
        }
        if(b>d)
            swap(b,d);
        b/=k;
        d/=k;
        sum=0;
        sum+=f[b];
        for(i=b+1;i<=d;i++)
            sum+=solve(i,b);
        printf("Case %d: %lld\n",++ca,sum);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值