用条件随机场CRF进行字标注中文分词(Python实现)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010189459/article/details/38546115

        本文运用字标注法进行中文分词,使用4-tag对语料进行字标注,观察分词效果。模型方面选用开源的条件随机场工具包“CRF++: Yet Another CRF toolkit”进行分词。

        本文使用的中文语料资源是SIGHAN提供的backoff 2005语料,目前封闭测试最好的结果是4-tag+CFR标注分词,在北大语料库上可以在准确率,召回率以及F值上达到92%以上的效果,在微软语料库上可以到达96%以上的效果。


第一部分 条件随机场模型工具包安装说明

        在Linux或者Mac OS系统下,下载C++源代码安装包(这里用的是 CRF++-0.58.tar.gz )之后,按照如下步骤进行安装:

        1.进入到代码主目录后,正常按照“configure & make & (sudo) make install就可以完成C++库的安装。

        2.再进入到子目录python下,安装python包:python setup.py build & (sudo) python setup.py install,这个python库是通过强大的SWIG生成的。

        3.安装完毕之后,可以在python解释器下测试,是否能成功import CRFPP,如果ok,则准备工作就绪。


        注意:在安装过程中或者是后面的运行过程中(具体什么时候我忘记了),如果报出下面的错误:

        ImportError: libcrfpp.so.0: cannot open shared object file: No such file or directory 

        错误的原因是未能引入libcrfpp.so.0库,查找库文件存在,于是建立链接: 

        32位系统  ln -s /usr/local/lib/libcrfpp.so.* /usr/lib/ 

        64位系统  ln -s /usr/local/lib/libcrfpp.so.* /usr/lib64/ 

        问题解决。


第二部分 模型相关知识介绍

        在CRF++ example里有个seg目录,这个seg目录对应的是一个日文分词的样例,正好可以套用到我们的中文分词中来。在安装包目录下,执行cd example和cd seg命令后,切换到seg目录后,发现有4个文件:

        exec.sh(执行脚本)
        template(特征模板)
        test.data(测试集)
        train.data(训练集)


       有了这4个文件,我们可以做得事情就比较简单,只要按测试集,训练集的格式准备数据就可以了,特征模板和执行脚本可以套用,不过这里简单解读一下这几个CRF++文件。首先来看训练集:

毎 k   B
日 k   I
新 k   I
聞 k   I
社 k   I
特 k   B
別 k   I
顧 k   B
問 k   I                                                 
4 n   B

        这里第一列是待分词的日文字,第二列暂且认为其是词性标记,第三列是字标注中的2-tag(B, I)标记,这个很重要,对于我们需要准备的训练集,主要是把这一列的标记做好,不过需要注意的是,其断句是靠空行来完成的。

        再来看测试集的格式:

よ h   I
っ h   I
て h   I
私 k   B
た h   B
ち h   I
の h   B                                                     
世 k   B
代 k   I
が h   B

        同样也有3列,第一列是日文字,第二列第三列与上面是相似的,不过在测试集里第三列主要是占位作用。事实上,CRF++对于训练集和测试集文件格式的要求是比较灵活的,首先需要多列,但不能不一致,既在一个文件里有的行是两列,有的行是三列;其次第一列代表的是需要标注的“字或词”,最后一列是输出位”标记tag”,如果有额外的特征,例如词性什么的,可以加到中间列里,所以训练集或者测试集的文件最少要有两列。

        接下里我们再来详细的分析一下特征模板文件:

# Unigram
U00:%x[-2,0]
U01:%x[-1,0]
U02:%x[0,0]
U03:%x[1,0]
U04:%x[2,0]
U05:%x[-2,0]/%x[-1,0]/%x[0,0]
U06:%x[-1,0]/%x[0,0]/%x[1,0]
U07:%x[0,0]/%x[1,0]/%x[2,0]
U08:%x[-1,0]/%x[0,0]                                          
U09:%x[0,0]/%x[1,0]

# Bigram
B


        关于CRF++中特征模板的说明和举例,请大家参考官方文档上的“Preparing feature templates”这一节,而以下部分的说明拿上述日文分词数据举例。在特征模板文件中,每一行(如U00:%x[-2,0])代表一个特征,而宏“%x[行位置,列位置]”则代表了相对于当前指向的token的行偏移和列的绝对位置,以上述训练集为例,如果当前扫描到“新 k I”这一行,

毎 k   B
日 k   I
新 k   I   <== 扫描到这一行,代表当前位置
聞 k   I
社 k   I
特 k   B
別 k   I
顧 k   B
問 k   I
4 n   B

        那么依据特征模板文件抽取的特征如下:

# Unigram
U00:%x[-2,0] ==> 毎
U01:%x[-1,0] ==> 日
U02:%x[0,0]  ==> 新
U03:%x[1,0]  ==> 聞
U04:%x[2,0]  ==> 社
U05:%x[-2,0]/%x[-1,0]/%x[0,0] ==> 每/日/新
U06:%x[-1,0]/%x[0,0]/%x[1,0]  ==> 日/新/聞
U07:%x[0,0]/%x[1,0]/%x[2,0]   ==> 新/聞/社
U08:%x[-1,0]/%x[0,0]          ==> 日/新
U09:%x[0,0]/%x[1,0]           ==> 新/聞

# Bigram
B

        CRF++里将特征分成两种类型,一种是Unigram的,“U”起头,另外一种是Bigram的,“B”起头。对于Unigram的特征,假如一个特征模板是”U01:%x[-1,0]“, CRF++会自动的生成一组特征函数(func1 … funcN) 集合:

func1 = if (output = B and feature="U01:日") return 1 else return 0
func2 = if (output = I and feature="U01:日") return 1 else return 0
....
funcXX = if (output = B and feature="U01:問") return 1  else return 0
funcXY = if (output = I and feature="U01:問") return 1  else return 0

        生成的特征函数的数目 = (L * N),其中L是输出的类型的个数,这里是B,I这两个tag,N是通过模板扩展出来的所有单个字符串(特征)的个数,这里指的是在扫描所有训练集的过程中找到的日文字(特征)。

        而Bigram特征主要是当前的token和前面一个位置token的自动组合生成的bigram特征集合。最后需要注意的是U01和U02这些标志位,与特征token组合到一起主要是区分“U01:問”和“U02:問”这类特征,虽然抽取的日文”字”特征是一样的,但是在CRF++中这是有区别的特征。

        最后我们再来看一下执行脚本:

#!/bin/sh
../../crf_learn -f 3 -c 4.0 template train.data model
../../crf_test -m model test.data

../../crf_learn -a MIRA -f 3 template train.data model
../../crf_test -m model test.data
rm -f model

        执行脚本告诉了我们如何训练一个CRF模型,以及如何利用这个模型来进行测试,执行这个脚本之后,对于输入的测试集,输出结果多了一列:

よ h   I   B
っ h   I   I
て h   I   B
私 k   B   B
た h   B   B
ち h   I   I
の h   B   B                                      
世 k   B   B
代 k   I   I
が h   B   B

        而这一列才是模型预测的改字的标记tag,也正是我们所需要的结果。到此为止,关于日文分词样例的介绍已经完毕,读者应该可以猜测到接下来我们会如何做中文分词吧?


第三部分 中文分词实践

        1.将backoff2005里的训练数据转化为CRF++所需的训练数据格式,语料选取的是以北京大学《人民日报》的语料,采用4-tag( B(Begin,词首), E(End,词尾), M(Middle,词中), S(Single,单字词))标记集,处理utf-8编码文本。

        原始训练集./icwb2-data/training/pku_training.utf8的形式是人工分好词的中文句子形式。根据如下的脚本 make_train.py,将这个训练语料转换为CRF++训练用的语料格式(2列,4-tag):

#!/usr/bin/env python
#-*-coding:utf-8-*-

#4-tags for character tagging: B(Begin),E(End),M(Middle),S(Single)

import codecs
import sys

def character_tagging(input_file, output_file):
    input_data = codecs.open(input_file, 'r', 'utf-8')
    output_data = codecs.open(output_file, 'w', 'utf-8')
    for line in input_data.readlines():
        word_list = line.strip().split()
        for word in word_list:
            if len(word) == 1:
                output_data.write(word + "\tS\n")
            else:
                output_data.write(word[0] + "\tB\n")
                for w in word[1:len(word)-1]:
                    output_data.write(w + "\tM\n")
                output_data.write(word[len(word)-1] + "\tE\n")
        output_data.write("\n")
    input_data.close()
    output_data.close()

if __name__ == '__main__':
    if len(sys.argv) != 3:
        print ("Usage: python " + argv[0] + " input output")
        sys.exit(-1)
    input_file = sys.argv[1]
    output_file = sys.argv[2]
    character_tagging(input_file, output_file)

        结果(假定文件名为pku_training_tag.utf8,后文会用到)样例如下:

“ S
人 B
们 E
常 S
说 S
生 B
活 E
是 S                                      
一 S
部 S
...

        

        2.有了这份训练语料,就可以利用crf的训练工具crf_learn来训练模型了,执行如下命令即可:crf_learn -f 3 -c 4.0 template pku_training_tag.utf8 crf_model
        训练的时间稍微有些长,在我的2G内存的机器上跑了将近567轮,大约21个小时,最终训练的crf_model约37M。有了模型,现在我们需要做得还是准备一份CRF++用的测试语料,然后利用CRF++的测试工具crf_test进行字标注。原始的测试语料是icwb2-data/testing/pku_test.utf8 ,下面的脚本会把测试语料转化为模型需要的格式(详见第二部分的介绍),并且把切分好的文件展现出来。脚本如下:

#!/usr/bin/env python
#-*-coding:utf-8-*-

#CRF Segmenter based character tagging:
# 4-tags for character tagging: B(Begin), E(End), M(Middle), S(Single)

import codecs
import sys

import CRFPP

def crf_segmenter(input_file, output_file, tagger):
    input_data = codecs.open(input_file, 'r', 'utf-8')
    output_data = codecs.open(output_file, 'w', 'utf-8')
    for line in input_data.readlines():
        tagger.clear()
        for word in line.strip():
            word = word.strip()
            if word:
                tagger.add((word + "\to\tB").encode('utf-8'))
        tagger.parse()
        size = tagger.size()
        xsize = tagger.xsize()
        for i in range(0, size):
            for j in range(0, xsize):
                char = tagger.x(i, j).decode('utf-8')
                tag = tagger.y2(i)
                if tag == 'B':
                    output_data.write(' ' + char)
                elif tag == 'M':
                    output_data.write(char)
                elif tag == 'E':
                    output_data.write(char + ' ')
                else:
                    output_data.write(' ' + char + ' ')
        output_data.write('\n')
    input_data.close()
    output_data.close()

if __name__ == '__main__':
    if len(sys.argv) != 4:
        print "Usage: python " + sys.argv[0] + " model input output"
        sys.exit(-1)
    crf_model = sys.argv[1]
    input_file = sys.argv[2]
    output_file = sys.argv[3]
    tagger = CRFPP.Tagger("-m " + crf_model)
    crf_segmenter(input_file, output_file, tagger)


第四部分 分词结果

        有了CRF字标注分词结果,我们就可以利用backoff2005的测试脚本来测一下这次分词的效果了:
./icwb2-data/scripts/score ./icwb2-data/gold/pku_training_words.utf8 ./icwb2-data/gold/pku_test_gold.utf8 pku_result.utf8 > pku_result.score
        注:pku_result.utf8为最终得到的分词结果文件
        结果如下:


        从上图可以看出,CRF分词的准确率为93.7%,召回率为92.3%。


参考文章:http://www.52nlp.cn/中文分词入门之字标注法4

没有更多推荐了,返回首页