杭电1080-Lcs+DP(**有借鉴**)

http://acm.hdu.edu.cn/showproblem.php?pid=1080

首先题意:

题目意思是:要求你必须按照给出的一个表格每一对字母对应的值。怎样才能在求出两个字符串最长子字符串的同时,得出最大的值。

具体思路:首先根据LCS的公式的出最长的子串。再根据DP的思想求出最大的值,球最大的值时可以加“-“;来保证值最大!(开始对于LCS)不太理解,有点难。

具体细节见代码:(有些借鉴);

#include<iostream>
#include<cstdio>
#include<map>//map头文件
#include<string>//这里必须注意下,因为要利用到(map<string,int>m),所以不可以写出(#include<cstring>),否则就会出错。
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=110;
int dp[maxn][maxn];
char str1[maxn],str2[maxn];
map<string,int>m;//这是值得转化,将对应的字符转化为对应的值。
int main()
{
    int i,j;
    m["AA"]=5;
    m["CC"]=5;
    m["GG"]=5;
    m["TT"]=5;
    m["AC"]=m["CA"]=-1;
    m["AG"]=m["GA"]=-2;
    m["AT"]=m["TA"]=-1;
    m["A-"]=m["-A"]=-3;
    m["CG"]=m["GC"]=-3;
    m["CT"]=m["TC"]=-2;
    m["C-"]=m["-C"]=-4;
    m["GT"]=m["TG"]=-2;
    m["G-"]=m["-G"]=-2;
    m["T-"]=m["-T"]=-1;
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int len1,len2;
       // memset(str1,0,sizeof(str1));
       // memset(str2,0,sizeof(str2));
        //getchar();
        scanf("\n%d%s \n%d%s",&len1,str1+1,&len2,str2+1);//输入时也要注意,应为数组一般默认是i的值都为0;如果输入时用直接为(str1,str2)的话就会在第二个字符会找不到。
        //memset(dp,0,sizeof(dp));
        for(i=0;i<=len1;i++)//对应的以下两个for必须注意下i的初值,
        {
           // cout<<str1[i]<<endl;
            if(i==0)dp[0][0]=0;
            else
            {
                string s("-");//将s赋值为(“-”);
                s+=str1[i];
                dp[i][0]=dp[i-1][0]+m[s];
            }
        }
        for(i=1;i<=len2;i++)
        {
            //cout<<str2[i]<<endl;
            string s("-");
            s+=str2[i];
            dp[0][i]=dp[0][i-1]+m[s];
        }
        for(i=1;i<=len1;i++)
        {
            for(j=1;j<=len2;j++)
            {
                string s1="-",s2="-",s3="";//给s1,s2,s3赋值,是否该加“-”还是不加“”;
                s1+=str1[i];
                s2+=str2[j];
                s3=s3+str1[i]+str2[j];//不加是对应的值。
                dp[i][j]=dp[i][j-1]+m[s2];//只是str2所对应的。
                dp[i][j]=max(dp[i-1][j]+m[s1],dp[i][j]);//进行DP状态分析。
                dp[i][j]=max(dp[i-1][j-1]+m[s3],dp[i][j]);//同理。
            }
        }
        printf("%d\n",dp[len1][len2]);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值