RFID标签识别中的特征选择

#引用

##LaTex

@INPROCEEDINGS{6417479,
author={D. Banerjee and Jiang Li and Jia Di and D. R. Thompson},
booktitle={7th International Conference on Communications and Networking in China},
title={Feature selection for RFID tag identification},
year={2012},
volume={},
number={},
pages={218-221},
keywords={optimisation;radiofrequency identification;security;FMR;FNMR;MOOP;RFID tag identification;false match rate;false non-match rate;feature selection;multi-objective optimization;radio frequency identification;security requirements;Cloning;Fingerprint recognition;Magnetic resonance;Object recognition;Optimization;Radiofrequency identification;Security;Featuer selection;RFID;Tag identification},
doi={10.1109/ChinaCom.2012.6417479},
ISSN={},
month={Aug},}

##Normal

D. Banerjee, Jiang Li, Jia Di and D. R. Thompson, “Feature selection for RFID tag identification,” 7th International Conference on Communications and Networking in China, Kun Ming, 2012, pp. 218-221.
doi: 10.1109/ChinaCom.2012.6417479
keywords: {optimisation;radiofrequency identification;security;FMR;FNMR;MOOP;RFID tag identification;false match rate;false non-match rate;feature selection;multi-objective optimization;radio frequency identification;security requirements;Cloning;Fingerprint recognition;Magnetic resonance;Object recognition;Optimization;Radiofrequency identification;Security;Featuer selection;RFID;Tag identification},
URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6417479&isnumber=6417432


#摘要

multi-objective optimization (MOOP)

原理:
a tag is identified by matching a set of unique characteristics measured from the tag to previous stored copies in a database

AIM:
select the most effective characteristics for tag identification

  • false match rate (FMR)
  • false non-match rate (FNMR)

a set of best possible FMR and FNMR performances

meet specific security requirements


#主要内容

这里写图片描述

这里写图片描述


##试验

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值