bzoj3312[Usaco2013 Nov]No Change不找零

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3312

题目大意:


题解:

状压dp+二分

f[i]表示选了哪些信用卡(用二进制i表示)后能支付的最多的账单数

在选一张新的信用卡时,二分在之前的基础上能支付的最多的账单数

[我一开始直接枚举了orzTLE

状压的方程我都不知道写出来怎么用通俗的语言去解释= =

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
#define maxn 100010
#define inf 10000000000000LL

LL a[maxn],sum[30],f[1<<20];//a-账单的前缀和 sum-信用卡的前缀和
LL mymin(LL x,LL y){return (x<y)?x:y;}
LL mymax(LL x,LL y){return (x>y)?x:y;}
LL tc(LL l,LL r,LL x)//二分
{
	LL ll=l,bz=sum[x]-sum[x-1],ret=0;
	while (l<=r)
	{
		LL mid=(l+r)>>1;
		if (a[mid]-a[ll-1]<=bz) ret=mid,l=mid+1;
		else r=mid-1;
	}return ret;
}
int main()
{
	//freopen("nochange.in","r",stdin);
	//freopen("nochange.out","w",stdout);
	LL k,n,i,j,ii,mx,x,ans;
	sum[0]=a[0]=0;
	scanf("%lld%lld",&k,&n);
	for (i=1;i<=k;i++)
	{
		scanf("%lld",&x);
		sum[i]=sum[i-1]+x;
	}
	for (i=1;i<=n;i++)
	{
		scanf("%lld",&x);
		a[i]=a[i-1]+x;
	}
	memset(f,0,sizeof(f));
	mx=(1<<k)-1;ans=inf;
	for (i=0;i<mx;i++)
	{
		for (j=1;j<=k;j++)
		 if (!(i&(1<<j-1)))
		 {
			ii=tc(f[i]+1,n,j);//ii就是二分出的最远能买到的账单数
			f[i|(1<<j-1)]=mymax(f[i|(1<<j-1)],ii);
			if (ii==n)//如果所有账单都给完钱了:
			{
				int ret=0;
				for (ii=1;ii<=k;ii++)
				 if ((i|(1<<j-1))&(1<<ii-1)) ret+=sum[ii]-sum[ii-1];
				ans=mymin(ans,ret);//ans是花掉的信用卡的钱
			}
		 }
	}
	if (ans==inf) printf("-1\n");
	else printf("%lld\n",sum[k]-ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值