bzoj3312[Usaco2013 Nov]No Change不找零

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3312

题目大意:


题解:

状压dp+二分

f[i]表示选了哪些信用卡(用二进制i表示)后能支付的最多的账单数

在选一张新的信用卡时,二分在之前的基础上能支付的最多的账单数

[我一开始直接枚举了orzTLE

状压的方程我都不知道写出来怎么用通俗的语言去解释= =

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
#define maxn 100010
#define inf 10000000000000LL

LL a[maxn],sum[30],f[1<<20];//a-账单的前缀和 sum-信用卡的前缀和
LL mymin(LL x,LL y){return (x<y)?x:y;}
LL mymax(LL x,LL y){return (x>y)?x:y;}
LL tc(LL l,LL r,LL x)//二分
{
	LL ll=l,bz=sum[x]-sum[x-1],ret=0;
	while (l<=r)
	{
		LL mid=(l+r)>>1;
		if (a[mid]-a[ll-1]<=bz) ret=mid,l=mid+1;
		else r=mid-1;
	}return ret;
}
int main()
{
	//freopen("nochange.in","r",stdin);
	//freopen("nochange.out","w",stdout);
	LL k,n,i,j,ii,mx,x,ans;
	sum[0]=a[0]=0;
	scanf("%lld%lld",&k,&n);
	for (i=1;i<=k;i++)
	{
		scanf("%lld",&x);
		sum[i]=sum[i-1]+x;
	}
	for (i=1;i<=n;i++)
	{
		scanf("%lld",&x);
		a[i]=a[i-1]+x;
	}
	memset(f,0,sizeof(f));
	mx=(1<<k)-1;ans=inf;
	for (i=0;i<mx;i++)
	{
		for (j=1;j<=k;j++)
		 if (!(i&(1<<j-1)))
		 {
			ii=tc(f[i]+1,n,j);//ii就是二分出的最远能买到的账单数
			f[i|(1<<j-1)]=mymax(f[i|(1<<j-1)],ii);
			if (ii==n)//如果所有账单都给完钱了:
			{
				int ret=0;
				for (ii=1;ii<=k;ii++)
				 if ((i|(1<<j-1))&(1<<ii-1)) ret+=sum[ii]-sum[ii-1];
				ans=mymin(ans,ret);//ans是花掉的信用卡的钱
			}
		 }
	}
	if (ans==inf) printf("-1\n");
	else printf("%lld\n",sum[k]-ans);
	return 0;
}


题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值