RMQ(Range Minimum Query)问题是在一个数组中查找给定区间内最小元素的问题。它是一个非常常见的数据结构问题,有很多高效的算法可以解决这个问题,例如算法和Segment Tree算法。下面,我将详细介绍算法的C++实现,因为它是一种非常强大且易于理解的解决方案。
是一种二叉树形数据结构,它允许快速查询数组中的最小值、最大值、总和等统计信息。的每个节点都包含了区间的信息,并且它的左子节点和右子节点分别包含区间
和
的信息。
以下是Segment Tree的C++实现:
#include <iostream>
#include <vector>
#include <climits> // 用于INT_MAX
#include <algorithm> // 用于std::min
// 定义一个Segment Tree节点结构
struct SegmentTreeNode {
int start, end, min;
SegmentTreeNode *left, *right;
SegmentTreeNode(int s, int e) : start(s), end(e), min(INT_MAX), left(nullptr), right(nullptr) {}
};
// 构建Segment Tree
SegmentTreeNode* buildTree(const std::vector<int>& nums, int start, int end) {
if (start > end) return nullptr;
SegmentTreeNode* root = new SegmentTreeNode(start, end);
if (start == end) {
root->min = nums[start];
return root;
}
int mid = start + (end - start) / 2;
root->left = buildTree(nums, start, mid);
root->right = buildTree(nums, mid + 1, end);
root->min = std::min(root->left->min, root->right->min);
return root;
}
// 查询区间最小值
int queryMin(SegmentTreeNode* root, int start, int end) {
if (root == nullptr || start > end || root->start > end || root->end < start) return INT_MAX;
if (root->start >= start && root->end <= end) return root->min;
return std::min(queryMin(root->left, start, end), queryMin(root->right, start, end));
}
// 更新区间内的值(这里不展示,因为RMQ问题通常不需要更新)
// 销毁Segment Tree
void destroyTree(SegmentTreeNode* root) {
if (root == nullptr) return;
destroyTree(root->left);
destroyTree(root->right);
delete root;
}
int main() {
std::vector<int> nums = {1, 3, 2, 7, 9, 11};
SegmentTreeNode* root = buildTree(nums, 0, nums.size() - 1);
std::cout << "Minimum in range [1, 3]: " << queryMin(root, 1, 3) << std::endl;
std::cout << "Minimum in range [0, 5]: " << queryMin(root, 0, 5) << std::endl;
destroyTree(root);
return 0;
}
在这个实现中,我们首先定义了一个结构体来表示的节点。
函数用于从给定的数组构建。
函数用于查询区间
内的最小值。请注意,这个实现假设数组是从0开始索引的。
Segment Tree的查询和构建时间复杂度都是,其中
是数组的大小。这使得在处理大规模数据范围查询问题时非常高效。
如果您有任何关于RMQ算法或实现的问题,或者需要进一步的帮助,请告诉我!