RMQ算法c++模板

RMQ(Range Minimum Query)问题是在一个数组中查找给定区间内最小元素的问题。它是一个非常常见的数据结构问题,有很多高效的算法可以解决这个问题,例如Sparse Table算法和Segment Tree算法。下面,我将详细介绍Segment Tree算法的C++实现,因为它是一种非常强大且易于理解的解决方案。

Segment Tree是一种二叉树形数据结构,它允许快速查询数组中的最小值、最大值、总和等统计信息。Segment Tree的每个节点都包含了区间[start, end]的信息,并且它的左子节点和右子节点分别包含区间[start, mid][mid+1, end]的信息。

以下是Segment Tree的C++实现:

#include <iostream>
#include <vector>
#include <climits> // 用于INT_MAX
#include <algorithm> // 用于std::min

// 定义一个Segment Tree节点结构
struct SegmentTreeNode {
    int start, end, min;
    SegmentTreeNode *left, *right;
    SegmentTreeNode(int s, int e) : start(s), end(e), min(INT_MAX), left(nullptr), right(nullptr) {}
};

// 构建Segment Tree
SegmentTreeNode* buildTree(const std::vector<int>& nums, int start, int end) {
    if (start > end) return nullptr;
    SegmentTreeNode* root = new SegmentTreeNode(start, end);
    if (start == end) {
        root->min = nums[start];
        return root;
    }
    int mid = start + (end - start) / 2;
    root->left = buildTree(nums, start, mid);
    root->right = buildTree(nums, mid + 1, end);
    root->min = std::min(root->left->min, root->right->min);
    return root;
}

// 查询区间最小值
int queryMin(SegmentTreeNode* root, int start, int end) {
    if (root == nullptr || start > end || root->start > end || root->end < start) return INT_MAX;
    if (root->start >= start && root->end <= end) return root->min;
    return std::min(queryMin(root->left, start, end), queryMin(root->right, start, end));
}

// 更新区间内的值(这里不展示,因为RMQ问题通常不需要更新)

// 销毁Segment Tree
void destroyTree(SegmentTreeNode* root) {
    if (root == nullptr) return;
    destroyTree(root->left);
    destroyTree(root->right);
    delete root;
}

int main() {
    std::vector<int> nums = {1, 3, 2, 7, 9, 11};
    SegmentTreeNode* root = buildTree(nums, 0, nums.size() - 1);
    std::cout << "Minimum in range [1, 3]: " << queryMin(root, 1, 3) << std::endl;
    std::cout << "Minimum in range [0, 5]: " << queryMin(root, 0, 5) << std::endl;
    destroyTree(root);
    return 0;
}

在这个实现中,我们首先定义了一个SegmentTreeNode结构体来表示Segment Tree的节点。buildTree函数用于从给定的数组构建Segment TreequeryMin函数用于查询区间[start, end]内的最小值。请注意,这个实现假设数组是从0开始索引的。

Segment Tree的查询和构建时间复杂度都是O(log n),其中n是数组的大小。这使得Segment Tree在处理大规模数据范围查询问题时非常高效。

如果您有任何关于RMQ算法或Segment Tree实现的问题,或者需要进一步的帮助,请告诉我!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值