算法是一种用于寻找加权图中最小生成树的算法。下面是一个使用C++实现的Prim算法示例,同样使用了优先队列来优化算法效率:
#include <iostream>
#include <vector>
#include <queue>
#include <climits> // For INT_MAX
using namespace std;
const int V = 9; // 图的顶点数
// 定义结构体来存储顶点信息
struct Vertex {
int vertex;
int weight;
bool operator<(const Vertex& v) const {
return weight > v.weight;
}
};
// 定义Prim算法的实现函数
void prim(vector<vector<int>> graph) {
vector<int> key(V, INT_MAX); // 存储最小生成树中顶点的最小权重
bool inMST[V]; // 记录顶点是否已加入最小生成树
vector<int> parent(V); // 存储最小生成树中顶点的前驱顶点
// 初始化向量
key = 0; // 设置第一个顶点的权重为0
parent = -1; // 第一个顶点没有前驱顶点
priority_queue<Vertex> pq;
pq.push({0, 0});
while (!pq.empty()) {
int u = pq.top().vertex;
pq.pop();
inMST[u] = true;
// 遍历所有与顶点u相邻的顶点
for (int v = 0; v < V; v++) {
if (graph[u][v] && !inMST[v] && key[v] > graph[u][v]) {
key[v] = graph[u][v];
parent[v] = u;
pq.push({v, key[v]});
}
}
}
// 打印最小生成树的边和权重
cout << "边\t权重\n";
for (int i = 1; i < V; i++) {
cout << parent[i] << " - " << i << "\t" << graph[i][parent[i]] << "\n";
}
}
// 主函数
int main() {
vector<vector<int>> graph = {
{0, 2, 0, 6, 0},
{2, 0, 3, 8, 5},
{0, 3, 0, 0, 7},
{6, 8, 0, 0, 9},
{0, 5, 7, 9, 0}
};
prim(graph);
return 0;
}
在这个示例中:
定义了图的顶点数。
是一个二维向量,表示顶点之间的边权重,其中
表示两个顶点之间没有直接的边。
函数实现了Prim算法,计算最小生成树,并打印出最小生成树的每条边及其权重。
- 懒得写输入,你们自己看吧。。。
你可以根据实际需要修改 和
的值,以适应不同的图结构。同时, 函数中使用了优先队列来优化算法的效率,优先队列中的元素按照权重从小到大排序。在每次迭代中,优先队列中权重最小的未加入最小生成树的顶点将被加入最小生成树中。