算法是一种用于寻找图中两点间最短路径的算法,适用于无负权边的图。下面是一个使用C++实现的算法示例,使用优先队列来优化算法效率:
#include <iostream>
#include <climits> // For INT_MAX
#include <vector>
#include <queue> // For priority_queue
using namespace std;
const int V = 9; // 图的顶点数
// 定义一个结构体来存储顶点信息
struct Vertex {
int vertex;
int weight;
bool operator<(const Vertex& v) const {
return weight > v.weight;
}
};
// 定义一个函数来实现Dijkstra算法
void dijkstra(vector<vector<int>> graph, int src) {
vector<int> dist(V, INT_MAX); // 存储最短距离的向量
bool visited[V]; // 记录顶点是否已访问
vector<int> prev(V, -1); // 存储最短路径上的前驱顶点
// 初始化距离向量和前驱顶点向量
dist[src] = 0;
priority_queue<Vertex> pq;
pq.push({src, 0});
while (!pq.empty()) {
int u = pq.top().vertex;
pq.pop();
if (visited[u]) continue;
visited[u] = true;
for (int v = 0; v < V; v++) {
if (graph[u][v] != 0) {
int alt = dist[u] + graph[u][v];
if (alt < dist[v]) {
dist[v] = alt;
prev[v] = u;
pq.push({v, alt});
}
}
}
}
// 打印最短距离和路径
cout << "顶点\t距离\t路径\n";
for (int i = 0; i < V; i++) {
cout << i << "\t" << dist[i] << "\t";
int j = i;
while (j != -1) {
cout << j << " <- ";
j = prev[j];
}
cout << "start\n";
}
}
// 主函数
int main() {
vector<vector<int>> graph = {
{0, 4, 0, 0, 0, 0, 0, 8, 0},
{4, 0, 8, 0, 0, 0, 0, 11, 0},
{0, 8, 0, 7, 0, 4, 0, 0, 2},
{0, 0, 7, 0, 9, 14, 0, 0, 0},
{0, 0, 0, 9, 0, 10, 0, 0, 0},
{0, 0, 4, 14, 10, 0, 2, 0, 0},
{0, 0, 0, 0, 0, 2, 0, 1, 6},
{8, 11, 0, 0, 0, 0, 1, 0, 7},
{0, 0, 2, 0, 0, 0, 6, 7, 0}
};
dijkstra(graph, 0);
return 0;
}
在这个示例中:
定义了图的顶点数。
是一个二维向量,表示顶点之间的边权重,其中
0
表示两个顶点之间没有直接的边。- 函数实现了算法,计算从源顶点到所有其他顶点的最短路径,并打印结果。
你可以根据实际需要修改 和
的值,以适应不同的图结构。同时, 函数中使用了优先队列来优化算法的效率,优先队列中的元素按照权重从小到大排序。