268. Missing Number
一、问题描述
Given an array containing n distinct numbers taken from
0, 1, 2, ..., n
, find the one that is missing from the array.Note:
Your algorithm should run in linear runtime complexity. Could you implement it using only constant extra space complexity?
二、输入输出
For example,
Given nums = [0, 1, 3]
return 2
.
三、解题思路
利用原来数组的存储空间
- 这道题的难点在于o(n)的空间复杂度。如果没有这个限制最容易想到的方法是使用一个同样大小的vector 记录那些元素出现过,哪些元素没有出现过。那么我们能不能用原数组这个o(n)的空间那?答案是of course。
- 这里有一个隐藏的对应关系,假设我们把nums 从小到大排序,那么每一个值
nums[i]
的数组下标就是nums[i]
, 可以将对应位置的值取反,最后再遍历一遍,为负表示对应的值出现过,为正表示i这个值没有出现过,因为如果出现过,下标为i的位置的值会被设置为负的 - 有一点问题是
0
这个值的相反数还是他本身,所以我们先把原来的输入统一加1 这样就没有这个干扰了
class Solution {
public:
int missingNumber(vector<int>& nums) {
int n = nums.size();
if(n == 0) return 0;
for (int i = 0; i < n; ++i) {
nums[i]++;
}
for (int i = 0; i < n; ++i) {
int index = abs(nums[i]) - 1;
if(index < n && nums[index] > 0){
nums[index] = -nums[index];
}
}
for (int i = 0; i < n; ++i) {
if(nums[i] > 0)return i;
}
return n;
}
};