lightOJ 1220 Mysterious Bacteria

题意:

给出一个数n,n是int范围,找出满足 n = x^b ,b的最大值。x为整数。

分析:

先打个素数表,再将n进行素因子分解,在对它的素因子的指数进行取最大公因数,例如 4500 = 2 ^ 2  * 3 ^ 2 * 5 ^ 4, 取gcd 后 =  2 ^ 2 * 3 ^ 2 * (5^2) ^ 2 = (2 *3 * (5^2) ) ^ 2;

故这个gcd就是结果。当n是负数时,因为一个数的偶数次方一定为正数,所以x一定为奇数,所以需要将它的素因子个数全部转换为奇数再处理。

代码:


#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int MAXN = 1000010;
bool vis[MAXN];
long long prime[MAXN/10];
int tot = 0;
void getPrime()//求素数
{
    for(long long i = 2; i < MAXN; i++)
        if(!vis[i])
        {
            prime[tot++] = i;
            for(long long j = i*i; j < MAXN; j += i)
                vis[j] = true;
        }
}
int a[1000];//保存素因子
int b[1000];//保存素因子的个数
int cnt;
void sbreak(long long n) //进行素因子分解
{
    memset(a, 0, sizeof(a));
    memset(b, 0, sizeof(b));
    cnt = 0;
    for(int i = 0; prime[i]*prime[i] <= n; i++)
    {
        if(n%prime[i] == 0)
        {
            a[cnt] = prime[i];
            while(n%prime[i] == 0)
            {
                b[cnt]++;
                n /= prime[i];
            }
            cnt++;
        }
    }
    if(n != 1)
    {
        a[cnt] = n;
        b[cnt++] = 1;
    }
}

int gcd(int a, int b)
{
    return b?gcd(b,a%b):a;
}

int main()
{
    int T, ans, kase = 1, flag;
    long long n;
    getPrime();
    scanf("%d", &T);
    while(T--)
    {
        flag = 1;//标志,判断n是正数还是负数
        scanf("%lld", &n);
        if(n < 0) {n = -n, flag = 0;}
        sbreak(n);
        int t = b[0];
        if(!flag) //如果n是奇数
        {
            if(t%2 == 0)
            {
                while(t%2 == 0) t /= 2;
            }
            for(int i = 0; i < cnt; i++) //将它的素因子的个数化为奇数
            {
                if(b[i]%2 == 0)
                {
                    while(b[i] %2 == 0) b[i] /= 2;
                }
                t = gcd(t,b[i]);
            }
        }
        else for(int i = 0; i < cnt; i++)  t = gcd(t, b[i]);
        printf("Case %d: %d\n", kase++, t);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值