一、并查集定义
并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。集就是让每个元素构成一个单元素的集合,也就是按一定顺序将属于同一组的元素所在的集合合并。
并查集本质上也是一个集合,集合则表示其中的元素没有顺序关系,之所以用森林表示是为了尽快确定两个元素是否属于同一个集合,当两个元素所在的树的根节点是同一个值,则表示两个元素属于同一个集合。由于集合的特征,因而并查集主要使用的场景和图论中连通图的确定类似,如果将图用并查集来表示顶点之间的关系,则最终图中存在几个连通图,则就存在几棵并查集的树。并查集中的元素两两都存在关系,关系即存在自反性、对称性、传递性,如果关系存在权值类型,则可以用额外的空间保存元素与根节点的关系性质,至于集合中其他元素两两之间的关系性质必然可以根据元素与跟元素的关系性质推导得到。
二、主要操作
初始化
把每个点所在集合初始化为其自身。
通常来说,这个步骤在每次使用该数据结构时只需要执行一次,无论何种实现方式,时间复杂度均为O(N)。
查找
查找元素所在的集合,即根节点。在查找的过程中可以进行路径压缩,即,将x到根节点上的所有节点的父节点都设置成根节点,使得下次查找时的路径尽量缩短。
合并
将两个元素所在的集合合并为一个集合。
通常来说,合并之前,应先判断两个元素是否属于同一集合,这可用上面的“查找”操作实现。
三、使用并查集解决的经典问题
解决问题的关键即在于查找算法和合并算法的实现。
-
不存在关系性质等额外信息
家族关系(连通图)
Description
若某个家族人员过于庞大,要判断两个是否是亲戚,确实还很不容易,给出某个亲戚关系图,求任意给出的两个人是否具有亲戚关系。 规定:x和y是亲戚,y和z是亲戚,那么x和z也是亲戚。如果x,y是亲戚,那么x的亲戚都是y的亲戚,y的亲戚也都是x的亲戚。
Input
第一行:三个整数n,m,p,(n< =5000,m< =5000,p< =5000),分别表示有n个人,m个亲戚关系,询问p对亲戚关系。 以下m行:每行两个数Mi,Mj,1< =Mi,Mj< =N,表示Mi和Mj具有亲戚关系。 接下来p行:每行两个数Pi,Pj,询问Pi和Pj是否具有亲戚关系。
Output
P行,每行一个’Yes’或’No’。表示第i个询问的答案为“具有”或“不具有”亲戚关系。
分析:
初步分析觉得本题是一个图论中判断两个点是否在同一个连通子图中的问题。
用图的数据结构的最大问题是,我们无法存下多至(M=)2 000000 条边的图,后面关于算法时效等诸多问题就免谈了。所以可以使用并查集解决。
查找+路径压缩
private static int findParent(int f){
while(father[f]!=f){
f=father[f];
}
return f;
}
合并操作
private static void union(int f,int t){
inta=findParent(f);
intb=findParent(t);
if(a==b)return;
if(a>b){
father[a]=b;
}
else {
father[b]=a;
}
}
(2)存在关系的性质属性等额外信息
食物链
Description
动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述:
第一种说法是"1 X Y",表示X和Y是同类。
第二种说法是"2 X Y",表示X吃Y。
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
1) 当前的话与前面的某些真的话冲突,就是假话;
2) 当前的话中X或Y比N大,就是假话;
3) 当前的话表示X吃X,就是假话。
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。
Input
第一行是两个整数N和K,以一个空格分隔。
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。
若D=1,则表示X和Y是同类。
若D=2,则表示X吃Y。
Output
只有一个整数,表示假话的数目。
分析
三种动物,相互之间只有3种关系:同级、吃和被吃。每一个动物都和其他动物存在关系,即必然每个动物都是相互连通的,关键在于合并时如何由两元素之间的关系以及元素与根节点的关系确定两个根节点之间的关系。
aa bb
| |
a ~ b
对于集合里的任意两个元素a,b而言,它们之间必定存在着某种联系,我们就把这2个元素之间的关系量转化为一个偏移量,以食物链的关系而言,不妨假设
a->b 偏移量0时 a和b同类
a->b 偏移量1时 a吃b
a->b 偏移量2时 a被b吃,也就是b吃a
有了这些基础,我们就可以在并查集中完成任意两个元素之间的关系转换了。不妨继续假设,a的当前集合根节点aa,b的当前集合根节点bb,a->b的偏移值为d-1(题中给出的询问已知条件)
(1)如果aa和bb不相同,那么我们把bb合并到aa上,并且更新delta[bb]值(delta[i]表示i的当前集合根节点到i的偏移量)此时aa->bb = aa->a +a->b+ b->bb,可能这一步就是所谓向量思维模式吧
上式进一步转化为:aa->bb = (delta[a]+d-1+3-delta[b])%3 =delta[bb],(模3是保证偏移量取值始终在[0,2]间)
(2)如果aa和bb相同,那么我们就验证a->b之间的偏移量是否与题中给出的d-1一致此时a->b = a->aa + aa->b =a->aa + bb->b,上式进一步转化为:a->b = (3-delta[a]+delta[b])%3,
若一致则为真,否则为假。
public void init()//初始化
{
for(inti=0;i<father.length;i++){
father[i]=i;
offset_v[i]=0;//i和i属于同级
}
}
int find(int a)//查找
{
if(father[a]==a)
returna;
intt=father[a];//用于路径压缩,推导出节点a和根节点的关系属性
father[a]=find(t);//找到根节点
offset_v[a]=(offset_v[a]+offset_v[t])%3;
returnfather[a];
}
void union(int a,int b, int type)//合并
{
intfa=find(a);
intfb=find(b);
if(fa==fb)
{
if(offset_v[b]-offset[x]+3)%3!=type)//与之前的语句矛盾
false_count++;
}
else
{
father[fb]=fa;//将b所在的树并到a所在的树上
offset_v[fb]=(offset_v[a]-offset_v[b]+type+3)%3;
}
}
相关参考博客链接: