Problem Description
To see a World in a Grain of Sand
And a Heaven in a Wild Flower,
Hold Infinity in the palm of your hand
And Eternity in an hour.
—— William Blake
听说lcy帮大家预定了新马泰7日游,Wiskey真是高兴的夜不能寐啊,他想着得快点把这消息告诉大家,虽然他手上有所有人的联系方式,但是一个一个联系过去实在太耗时间和电话费了。他知道其他人也有一些别人的联系方式,这样他可以通知其他人,再让其他人帮忙通知一下别人。你能帮Wiskey计算出至少要通知多少人,至少得花多少电话费就能让所有人都被通知到吗?
And a Heaven in a Wild Flower,
Hold Infinity in the palm of your hand
And Eternity in an hour.
—— William Blake
听说lcy帮大家预定了新马泰7日游,Wiskey真是高兴的夜不能寐啊,他想着得快点把这消息告诉大家,虽然他手上有所有人的联系方式,但是一个一个联系过去实在太耗时间和电话费了。他知道其他人也有一些别人的联系方式,这样他可以通知其他人,再让其他人帮忙通知一下别人。你能帮Wiskey计算出至少要通知多少人,至少得花多少电话费就能让所有人都被通知到吗?
Input
多组测试数组,以EOF结束。
第一行两个整数N和M(1<=N<=1000, 1<=M<=2000),表示人数和联系对数。
接下一行有N个整数,表示Wiskey联系第i个人的电话费用。
接着有M行,每行有两个整数X,Y,表示X能联系到Y,但是不表示Y也能联系X。
第一行两个整数N和M(1<=N<=1000, 1<=M<=2000),表示人数和联系对数。
接下一行有N个整数,表示Wiskey联系第i个人的电话费用。
接着有M行,每行有两个整数X,Y,表示X能联系到Y,但是不表示Y也能联系X。
Output
输出最小联系人数和最小花费。
每个CASE输出答案一行。
每个CASE输出答案一行。
Sample Input
12 16 2 2 2 2 2 2 2 2 2 2 2 2 1 3 3 2 2 1 3 4 2 4 3 5 5 4 4 6 6 4 7 4 7 12 7 8 8 7 8 9 10 9 11 10
Sample Output
3 6
解题:首先用强连通,进行缩点,组成新的点集合,其中每个新点是一个强连通分量,求出新的点入度为0的个数就是所要求的最少要通知的人数。
#include<stdio.h>
#include<iostream>
#include<vector>
using namespace std;
#define inf 99999999
int valu[1005],M[1005],node[1005],in[1005];
int low[1005],dfn[1005],tim,k;
int flog[1005],stack[1005],top;
vector<int>map[1005];
void init(int n)
{
for(int i=1; i<=n; i++)
{
flog[i]=0; map[i].clear();
in[i]=0; M[i]=inf;
}
k=0; tim=0; top=0;
}
void dfs(int v)
{
stack[++top]=v; flog[v]=1;
tim++; low[v]=dfn[v]=tim;
for(int i=0; i<map[v].size(); i++)
if(!flog[map[v][i]])
{
int u=map[v][i];
dfs(u);
low[v]=(low[v]<low[u])?low[v]:low[u];
}
else if(flog[map[v][i]]==1)
low[v]=(low[v]<dfn[map[v][i]])?low[v]:dfn[map[v][i]];
if(low[v]==dfn[v])
{
k++;
int u;
while(v!=stack[top])
{
u=stack[top--]; flog[u]=2; node[u]=k;
}
u=stack[top--]; flog[u]=2; node[u]=k;
}
}
int MIN(int a,int b)
{
return a>b?b:a;
}
int main()
{
int n,m,a,b,ans,sum;
while(scanf("%d%d",&n,&m)>0)
{
init(n);
for(int i=1; i<=n; i++)
scanf("%d",&valu[i]);
while(m--)
{
scanf("%d%d",&a,&b);
map[a].push_back(b);
}
for(int i=1; i<=n; i++)
if(flog[i]==0)
dfs(i);
for(int i=1; i<=n; i++)
{
M[node[i]]=MIN(valu[i],M[node[i]]);
for(int j=0; j<map[i].size(); j++)
{
int u=map[i][j];
if(node[i]!=node[u])
in[node[u]]++;
M[node[u]]=MIN(M[node[u]],valu[u]);
}
}
ans=0; sum=0;
for(int i=1; i<=k; i++)
if(in[i]==0)
{
ans++; sum+=M[i];
}
printf("%d %d\n",ans,sum);
}
}