sklearn 中的 Pipeline 机制
from sklearn.pipeline import Pipeline
管道机制实现了对全部步骤的流式化封装和管理(streaming workflows with pipelines)。
注意:管道机制更像是编程技巧的创新,而非算法的创新。
接下来我们以一个具体的例子来演示sklearn库中强大的Pipeline用法:
1 加载数据集
import pandas as pd
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import LabelEncoder
df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/'
'breast-cancer-wisconsin/wdbc.data', header=None)
X, y = df.values[:, 2:], df.values[:, 1]
# y为字符型标签
# 使用LabelEncoder类将其转换为0开始的数值型
encoder = LabelEncoder()
y = encoder.fit_transform(y)
X_train, X_test, y_train, y_t
sklearn 中的 Pipeline 机制
最新推荐文章于 2024-07-03 18:25:49 发布
本文介绍了如何使用sklearn的Pipeline实现数据预处理和机器学习算法的流水线操作,通过具体示例展示了Pipeline在逻辑回归和PCA降维中的应用,强调了Pipeline在简化流程和管理模型中的作用。
摘要由CSDN通过智能技术生成