sklearn 中的 Pipeline 机制

本文介绍了如何使用sklearn的Pipeline实现数据预处理和机器学习算法的流水线操作,通过具体示例展示了Pipeline在逻辑回归和PCA降维中的应用,强调了Pipeline在简化流程和管理模型中的作用。
摘要由CSDN通过智能技术生成

sklearn 中的 Pipeline 机制
from sklearn.pipeline import Pipeline

管道机制实现了对全部步骤的流式化封装和管理(streaming workflows with pipelines)。

注意:管道机制更像是编程技巧的创新,而非算法的创新。



接下来我们以一个具体的例子来演示sklearn库中强大的Pipeline用法:

1 加载数据集
import pandas as pd

from sklearn.cross_validation import train_test_split

from sklearn.preprocessing import LabelEncoder



df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/'

                 'breast-cancer-wisconsin/wdbc.data', header=None)

                    

X, y = df.values[:, 2:], df.values[:, 1]

                                # y为字符型标签

                                # 使用LabelEncoder类将其转换为0开始的数值型

encoder = LabelEncoder()

y = encoder.fit_transform(y)

X_train, X_test, y_train, y_t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值