陈省身文集51——闭黎曼流形高斯-博内公式的一个简单的内蕴证明



陈省身发表了大量的数学论文,但在这本文集中只收录这一篇(全部学术专著和论文的目录见附录)。原因是,陈省身把这篇论文作为他的代表作收入了《数学中的沃尔夫奖》一书。原文发表于美国《Annals of Mathematics》第45卷第9期,1944年。现由王善平译出,以供读者研究。

引言
C.B.艾伦多弗与W.芬切尔独立地把经典的高斯-博内公式推广到一个可嵌入欧几里得空间的闭可定向黎曼流形。最近,艾伦多弗与韦伊又把该公式推广到闭黎曼多面体,并特别证明了它对于一般闭黎曼流形的有效性。在他们的证明中仍然使用了把黎曼胞腔嵌入欧几里得空间的方法。本文的目的是,利用微分流形的向量场理论,给出该公式的一个直接的内蕴的证明。

本证明的基本思想十分简单,因此概要的说明会有帮助。令R^n是偶数n维的闭可定向黎曼流形[按照上下文,这里的R^n不是代表n维欧氏空间]。按照将详叙于后的方法,我们在R^n中定义一个内蕴的n阶外微分形式Ω,它当然等于R^n的不变量乘以体积元素。高斯-博内公式断言,这一微分形式在R^n上的积分等于R^n的欧拉-庞加莱示性数χ。为证明这一点,我们从流形R^n转到由R^n的单位向量构成的2n-1维流形M^(2n-1)。在M^(2n-1)中我们证明Ω等于一n-1阶微分形式Ⅱ的外导数。通过定义R^n上一个带有孤立奇点的连续的单位向量场,我们得到它在M^(2n-1)中的像:n维子流形V^n,而Ω在R^n上的积分就等于V^n上同样的积分。利用斯托克斯定理证明,后者等于Ⅱ在V^n的边界上的积分。现在,V^n的边界正好对应于定义在R^n中的向量场的奇点,一个著名的定理指出它们的指标和等于χ。经过如此解释,就可以计算Ⅱ在V^n的边界上的积分,并很容易证

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值