中除了某个数以外的_卷绕数和高斯-博内定理

本文介绍了卷绕数的概念,它是闭合平面曲线的总曲率,揭示了曲线的局部与整体性质之间的联系。同时,阐述了高斯-博内定理,该定理在曲面积分中将高斯曲率与拓扑性质欧拉示性数相联系。讨论了亏格的定义,并通过实例说明了定理的应用,如平面三角形内角和。
摘要由CSDN通过智能技术生成

008979bf8823eec847e64a5d5286461f.png

卷绕数

卷绕数( turning number, winding number)。

平面上的闭曲线关于某个点的卷绕数,是一个整数,它表示了曲线绕过该点的总次数。卷绕数与曲线的定向有关,如果曲线依顺时针方向绕过某个点,则卷绕数是负数。

94812c5caf4ad38faabc3210588e86ef.png
这条曲线关于点p的卷绕数是2 (cr:wikipedia)

0b7d25b9fa826852cf067ab09364135d.png
0 是因为曲线不绕过这个点。(cr:wikipedia)

有时候我们讲闭合平面曲线的卷绕数就是默认针对闭合曲线中的点:

49be7394a8c957a5d9ea8bdb3c81f2fb.png
图片来自网络

卷绕数定理:

闭合平面曲线的总曲率等于

乘以卷绕数 k.

曲率的定义是单位切向量沿曲线每单位长度转向的变化率。 所以我们把曲率沿着弧长做积分,当然就能得到总的转向了,所以上面的卷绕数定理显而易见。

这个卷绕数定理很有意思,它把曲线的局部性质-曲率和整体性质给联系起来了。

高斯-博内定理

Gauss-Bonnet Theorem 是类似于 Winding Number theorem, 针对的是曲面。

高斯曲率在曲面的积分等于

乘以欧拉示性数
.

补充一点定义:

  • 欧拉示性数 Euler characteristic
在代数拓扑中,欧拉示性数(Euler characteristic)是一个拓扑不变量(事实上,是同伦不变量),对于一大类拓扑空间有定义。它通常记作

其中V,E和F分别是点,边和面的个数。特别的有,对于所有和一个球面同胚的多面体,我们有

F-E+V=2 在多面体和离散数学中图有关的部分出现过,也叫欧拉公式(欧拉公式也太多了吧,o(╯□╰)o)

32adb2dca619700eb5ba871352fa629b.png
cr: wikipedia
二维拓扑多面体的欧拉示性数可以用以下公式计算:
  • 亏格 genus
闭可定向曲面的欧拉示性数可以通过它们的亏格g来计算

genus居然学名叫做亏格,哈哈,翻译也很贴切,简单的理解亏格就是有几个洞 ,o(╯□╰)o

012445ae3fda2f57b14ab3fb993c5208.png
图片来自网络
在微分几何中,高斯-博内定理(亦称高斯-博内公式)是关于曲面的图形(由曲率表征)和拓扑(由欧拉示性数表征)间联系的一项重要表述。

出现了好几个拓扑概念,此处应该献上此张 gif 送给 “不会区分甜甜圈和咖啡杯的人的拓扑学家”, o(╯□╰)o

75a2395f9fc633397aabddec5d4bc8b9.gif
cr: wikipedia

回到高斯-博内定理:高斯曲率在曲面的积分等于

乘以欧拉示性数

推广到有边界的曲面:

是其边界。令K为M的高斯曲率,
的测地曲率。则有

当然此时的欧拉示性数也需要除去边界:

当然重点是无论我们改变曲面或者是边界,但这并不影响总曲率。

像下面这张图,

并没有改变,所以积分的结果也并不会改变。另一个理解就是凸起的部分和凹下的部分的正负曲率抵消了。

33e51bec5e023e5f2e5e248b25a71a21.png

Gauss–Bonnet定理最简单的状况就是:平面三角形内角和为180度。

参考:

  • wikipedia
  • Discrete Differential Geometry
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值