数学及其历史读书摘要(201305)

本文概述了数学中的代数曲线,特别是笛卡尔的叶形线及其在三次曲线中的特性。讨论了费马小定理在数论和密码学中的重要性,并介绍了三次曲线的亏格概念。此外,还触及了复数和复曲线的理论,如分支点和黎曼的工作。文章以群论为终点,探讨了置换群在方程论和几何中的作用,尤其是伽罗瓦理论的基础。
摘要由CSDN通过智能技术生成

chap7解析几何
7.3代数曲线
在这段话中,笛卡尔定义了我们现在所谓的代数曲线。
笛卡尔拒绝超越方程是短视之举,因微积分很快就提供了研究它们的级数;但无论如何,集中关注代数曲线是有益的。特别地,次数的概念有利于反应曲线的复杂性。一次曲线可能是最简单的,即直线;二次曲线次简单,它们是圆锥曲线。在三次曲线的情形,我们看到了新的现象:拐折、二重点和尖点。众所周知,拐点和尖点分别出现在y=x^3和y^2=x^3中;我们在蔓叶线上也看到了尖点(2.5节)。有二重点的三次曲线的经典例子是笛卡尔的叶形线(folium,1638):x^3+y^3=3axy。“叶”是二重点右边的闭合部分;笛卡尔忽略负坐标,因而并不了解曲线的其余部分。叶形线的真实形状首先由惠更斯给出(1692)。图7.1是惠更斯画的,画中还显示了该曲线的渐近线。

chap11数论的复兴
11.2费马小定理
真正由费马证明的最著名的定理就是众所周知的他的“小”定理——之所以如此称呼这个定理,是为了把它和费马“最后”定理,或费马“大”定理(见下节)区分开来。费马小定理叙述如下:
如p是素数,n与p互素,则n^(p-1)≡1(mod p)。
为避免使用费马时代尚不知道的“同余mod p”这种语言,这个结论可等价表述为n^(p-1)-1被p整除或n^p-n被p整除。后者成立是因为n^p-n=n(n^(p-1)-1),那么,由于p是素数,又不能整除n,所以仅当p能整除n^(p-1)-1时才有p整除n^p-n。
费马小定理现在已成为应用数学的某些领域,诸如密码学中不可或缺的东

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值