变态跳台阶

版权声明:转载请注明出处古道边、半轮月http://www.azir.cn https://blog.csdn.net/u010405231/article/details/83752275

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

 

关于本题,前提是n个台阶会有一次n阶的跳法。分析如下:

f(1) = 1

f(2) = f(2-1) + f(2-2)         //f(2-2) 表示2阶一次跳2阶的次数。

f(3) = f(3-1) + f(3-2) + f(3-3) 

...

f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) + f(n-n) 

 

说明: 

1)这里的f(n) 代表的是n个台阶有一次1,2,...n阶的 跳法数。

2)n = 1时,只有1种跳法,f(1) = 1

3) n = 2时,会有两个跳得方式,一次1阶或者2阶,这回归到了问题(1) ,f(2) = f(2-1) + f(2-2) 

4) n = 3时,会有三种跳得方式,1阶、2阶、3阶,

    那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3)

    因此结论是f(3) = f(3-1)+f(3-2)+f(3-3)

5) n = n时,会有n中跳的方式,1阶、2阶...n阶,得出结论:

    f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1)

    

6) 由以上已经是一种结论,但是为了简单,我们可以继续简化:

    f(n-1) = f(0) + f(1)+f(2)+f(3) + ... + f((n-1)-1) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2)

    f(n) = f(0) + f(1) + f(2) + f(3) + ... + f(n-2) + f(n-1) = f(n-1) + f(n-1)

    可以得出:

    f(n) = 2*f(n-1)

    

7) 得出最终结论,在n阶台阶,一次有1、2、...n阶的跳的方式时,总得跳法为:

              | 1       ,(n=0 ) 

f(n) =     | 1       ,(n=1 )

              | 2*f(n-1),(n>=2)

1

2

3

4

5

6

7

8

9

10

11

public class Solution {

    public int JumpFloorII(int target) {

        if (target <= 0) {

            return -1;

        } else if (target == 1) {

            return 1;

        } else {

            return 2 * JumpFloorII(target - 1);

        }

    }

}

展开阅读全文

没有更多推荐了,返回首页