类激活图Cam和GradCam原理解读,代码实例讲解
网上关于类激活图Cam以及梯度类激活图的讲解很多,但都不是非常全面,这里我就全面的介绍一下两者的原理,并讲解代码实现过程,最后通过一个实例进行演示。类激活图cam(class activation map)通过可视化的热力图将模型认为最显著的结果显示出来,因此可用于解释模型预测的结果。卷积神经网络的最后一层卷积层包含了最丰富的空间和语义信息,于是Cam充分利用了最后一层卷积的特征,并将后面的全连接层和softmax层替换成了GAP层(全局平均池化),用特征图所有像素的均值代替整个特征图的值。每个特征图Ak
原创
2020-12-14 22:26:31 ·
5862 阅读 ·
2 评论