支持向量机(2)

第一节已经介绍了直接求解线性可分支持向量机的方法,但求解过程往往复杂。所以我们可以转换思路:将该问题作为原始问题,应用拉格朗日对偶性,通过求解对偶问题得到原始问题的解。这样做的好处:

  • 求解更加容易
  • 可以引入核函数,方便推广到非线性分类问题

对偶问题

对偶问题求解步骤:

  1. 根据原始问题,构造拉格朗日函数:

    L(w,b,α)=12||w||2+i=1Nαi(1yi(wxi+b))=12||w||2i=1Nαiyi(wxi+b)+i=1Nαi

  2. 原始问题为极小极大问题,对偶问题为极大极小问题。即:

    maxαminw,bL(w,b,α)
    先求 L(w,b,α) w,b 的极小,再求 minL(w,b,α) α 的极大。依次为:

    • 先求 L(w,b,α) w,b 的极小
      wL(w,b,α)=wi=1Nαiyixi=0
      bL(w,b,α)=i=1Nαiyi=0
      将两个等式结果代入 L(w,b,α) ,就得到了 minL(w,b,α) 。即:
      minw,bL(w,b,α)=12i=1Nj=1Nαiαjyiyj(xixj)i=1Nαiyi((j=1Nαjyjxi)xj+b)+i=1Nαi=12i=1Nj=1Nαiαjyiyj(xixj)+i=1Nαi
    • 再求 minL(w,b,α) α 的极大,即是对偶问题:
      maxα 12i=1Nj=1Nαiαjyiyj(xixj)+i=1Nαii=1Nαiyi=0αi0i=1,2,,N

      也等价于
      minα 12i=1Nj=1Nαiαjyiyj(xixj)i=1Nαii=1Nαiyi=0αi0i=1,2,,N
  3. 由上一步求解对偶问题,可以得到对偶问题的解 α=(α1,α2,,αN) 。且此原始问题和对偶问题符合转换的条件,通过KKT条件可以由 α 求得原始问题的解 w,b
    KKT条件:

    wL(w,b,α)=wi=1Nαiyixi=0bL(w,b,α)=i=1Nαiyi=0αi(yi(wxi+b)1)=0yi(wxi+b)10αi0i=1,2,,N

    则得到 w=Ni=1αiyixi ,又因为一定存在 αi>0 (若均等于0,则 w=0 不是原始问题可行解),则对于 αi>0 ,有 yi(wxi+b)1=0 ,则 b=yiwxi=yiNj=1αjyj(xixj)
    因此得到了分离超平面 Ni=1αiyi(xxi)+b=0 ,相应的分类器为 f(x)=sign(Ni=1αiyi(xxi)+b)
    也就是说,之前对于未知样本首先根据w和b做一次线性运算,然后看求的结果是大于0还是小于0,来判断正例还是负例。现在通过 αi ,我们不需要求出w,只需将未知样本和训练数据中的所有样本做内积和即可。另外,我们从KKT条件中得到,只有支持向量的 αi>0 ,其他情况 αi=0 。因此,我们只需求未知样本和支持向量的内积然后运算即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值