xgboost 调参经验

本文详述了xgboost的基本方法和默认参数,并分享了实战调参经验,包括参数设置、验证集划分、逐个调整max_depth、subsample、min_child_weight、colsample_bytree等,以及eta和num_round的优化。
摘要由CSDN通过智能技术生成

本文介绍三部分内容:
- xgboost 基本方法和默认参数
- 实战经验中调参方法
- 基于实例具体分析

1.xgboost 基本方法和默认参数

在训练过程中主要用到两个方法:xgboost.train()和xgboost.cv().

#xgboost.train()API
xgboost.train(params,dtrain,num_boost_round=10,evals=(),obj=None,feval=None,maximize=False,early_stopping_rounds=None,
evals_result=None,verbose_eval
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值