Description
Given a map of islands and bridges that connect these islands, a Hamilton path, as we all know, is a path along the bridges such that it visits each island exactly once. On our map, there is also a positive integer value associated with each island. We call a Hamilton path the best triangular Hamilton path if it maximizes the value described below.
Suppose there are n islands. The value of a Hamilton path C1C2...Cn is calculated as the sum of three parts. Let Vi be the value for the island Ci. As the first part, we sum over all the Vi values for each island in the path. For the second part, for each edge CiC i+1 in the path, we add the product Vi*V i+1. And for the third part, whenever three consecutive islands CiC i+1C i+2 in the path forms a triangle in the map, i.e. there is a bridge between Ci and C i+2, we add the product Vi*V i+1*V i+2.
Most likely but not necessarily, the best triangular Hamilton path you are going to find contains many triangles. It is quite possible that there might be more than one best triangular Hamilton paths; your second task is to find the number of such paths.
Suppose there are n islands. The value of a Hamilton path C1C2...Cn is calculated as the sum of three parts. Let Vi be the value for the island Ci. As the first part, we sum over all the Vi values for each island in the path. For the second part, for each edge CiC i+1 in the path, we add the product Vi*V i+1. And for the third part, whenever three consecutive islands CiC i+1C i+2 in the path forms a triangle in the map, i.e. there is a bridge between Ci and C i+2, we add the product Vi*V i+1*V i+2.
Most likely but not necessarily, the best triangular Hamilton path you are going to find contains many triangles. It is quite possible that there might be more than one best triangular Hamilton paths; your second task is to find the number of such paths.
Input
The input file starts with a number q (q<=20) on the first line, which is the number of test cases. Each test case starts with a line with two integers n and m, which are the number of islands and the number of bridges in the map, respectively. The next line contains n positive integers, the i-th number being the Vi value of island i. Each value is no more than 100. The following m lines are in the form x y, which indicates there is a (two way) bridge between island x and island y. Islands are numbered from 1 to n. You may assume there will be no more than 13 islands.
Output
For each test case, output a line with two numbers, separated by a space. The first number is the maximum value of a best triangular Hamilton path; the second number should be the number of different best triangular Hamilton paths. If the test case does not contain a Hamilton path, the output must be `0 0'.
Note: A path may be written down in the reversed order. We still think it is the same path.
Note: A path may be written down in the reversed order. We still think it is the same path.
Sample Input
2 3 3 2 2 2 1 2 2 3 3 1 4 6 1 2 3 4 1 2 1 3 1 4 2 3 2 4 3 4
Sample Output
22 3 69 1
好题 ,从这道才可以说是入门DP了吧,这题要注意是1的时候输出1,而且,要用int64,这里,错了好几次,
分析题目,壮态压缩,也就是用二进制来记录每个结点访问的次数,也就是dp的第一维记下来的,这样用二进制,也方便很多,但这不是难点,主要是要判是否形成三角形,这一点,就要记录,最后两个结点就可以了,因为,在加入新结点的时候,只有最后两个结点才是有作用的,这一点也是想了很长时间才明白的,此外就是一个普通DP,就很简单了!要注意,结点,在最后要除以二,因为题目说了顺序不同,算一个!
dp[staus][second][last] 表示状态为staus(二进制位是否为1表示是否走过),最后两个点为last,second两个点,
最后两个点就是为了看是否组成三角形用的,枚举第三条边进行更新就可以了!总的复杂度为o(2^k * n ^ 3);状态总数有
2^k * n * n个,加上每个状态转移有n个。具体看代码
<pre name="code" class="cpp">int n,m,v[15],mymap[15][15]; __int64 waynum[10000][15][15]; __int64 dp[10000][15][15]; __int64 fmin(__int64 a,__int64 b){if(a<b)return a;return b;}; void init() { int i,s,e,j,state; __int64 valstate; memset(mymap,-1,sizeof(mymap)); memset(dp,-1,sizeof(dp)); memset(waynum,0,sizeof(waynum)); memset(v,0,sizeof(v)); for(i=0;i<n;i++) scanf("%d",&v[i]); for(i=0;i<m;i++) { scanf("%d%d",&s,&e); s--;e--;//都从0开始 mymap[s][e]=mymap[e][s]=1; } for(i=0;i<n;i++) { for(j=0;j<n;j++) { if((i!=j)&&(mymap[i][j]!=-1))//i和j之间是相连通的且不是同一点 { state=(1<<i)+(1<<j); valstate=v[i]+v[j]+v[i]*v[j]; dp[state][i][j]=valstate;//初始化dp为一条边相连的壮态 waynum[state][i][j]=1;//相应壮态路的条数 } } } } int makedp() { int i,state,allnum,j,k; __int64 maxx,tempval,cnt; allnum=1<<n; for(state=0;state<allnum;state++) { for(i=0;i<n;i++)//最后第二位 if(state&(1<<i)) { for(j=0;j<n;j++)//倒第一位 { if((i!=j)&&(state&(1<<j))&&(dp[state][i][j]>=0))//必须从有意义的开始 { for(k=0;k<n;k++) { if(((j!=k)&&((state&(1<<k))==0)&&(mymap[j][k]!=-1)))//k未访问且k与最后一边相连 { if(mymap[i][k]!=-1)//倒第二个点,也相连,构成了三角形 { tempval=dp[state][i][j]+v[k]+v[j]*v[k]+v[i]*v[j]*v[k]; } else { tempval=dp[state][i][j]+v[k]+v[j]*v[k]; } if(tempval>dp[state|(1<<k)][j][k]) { dp[state|(1<<k)][j][k]=tempval; waynum[state|(1<<k)][j][k]= waynum[state][i][j]; } else if(tempval==dp[state|(1<<k)][j][k]) { waynum[state|(1<<k)][j][k]+=waynum[state][i][j];//注意壮态的先后关系 } } } } } } } maxx=-1;cnt=0; i=(1<<n)-1;//壮态必须是全都经过了一次 for(j=0;j<n;j++) for(k=0;k<n;k++) { // printf("%I64d %I64d \n",maxx,dp[i][j][k]); if(i!=j&&dp[i][j][k]!=-1) { if(dp[i][j][k]>maxx) { maxx=dp[i][j][k]; cnt=waynum[i][j][k];//结点更新成最大值 } else if(dp[i][j][k]==maxx)//如果和最大值相等,就把点加起来 { cnt+=waynum[i][j][k]; } } } if(maxx!=-1)//有回路 printf("%I64d %I64d\n",maxx,cnt/2); else printf("0 0\n"); return 1; } int main() { int tcase; scanf("%d",&tcase); while(tcase--) { scanf("%d%d",&n,&m); init(); if(n!=1) makedp(); else { printf("%d 1\n",v[0]);//一个结点就直接输出 } } return 0; }