两轮差速运动模型推导过程

博客以网络图片为模型,逐步推导两轮差速运动模型。定义了航向角、运动半径等参数,规定轮子旋转方向正负,通过几何关系分析得出各点速度、运动弧长等,还推导了M点角速度、运动半径及轨迹参数方程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        下面这张图片是从网络上拷贝过来,以这张图片为模型,我们来一步一步论证推导两轮差速运动模型,以下是原来网络上对这张图片的描述。
        下图是移动机器人在两个相邻时刻的位姿,其中 是两相邻时刻移动机器人绕圆弧运动的角度, 是两相邻时刻移动机器航向角(朝向角head)的变化量。 是左右轮之间的间距, 是右轮比左轮多走的距离。 是移动机器人圆弧运动的半径。


       从以上描述中我们得到一些定义:

  1. 航向角α           轮子行进方向与X轴夹角
  2. 运动半径r1      以两轮子轴心连线中点作为起点,沿着两轮子轴心连线的向量
  3. θ3:                     相邻时刻两轮子航向角的增量
  4. L                     左右两轮的间距

        网络描述中d的定义有些狭隘,我们不使用它的定义,使用一些新的定义。按照常理,两轮子顺时针旋转,小车前进,两轮子逆时针旋转,小车后退,我们按照这个习惯,定义轮子顺时针为正方向,逆时针为负方向。同时我们定义初始状态下,距离原点最近的轮子为左轮,另外一个轮子为右轮

  1. M(x,y) 两轮子轴心连线中点
  2. A(Xl,Yl):    左轮坐标
  3. B(Xr,Yr):右轮坐标
  4. ω:    轮子角速度,ω1表示左轮角速度,ω2表示右轮角速度,顺时针为正
  5. V     轮子线速度,V1表示左轮线速度,V2表示右轮线速度
  6. r:       轮子半径两轮半径一致

定义θ为X轴单位向量旋转θ角度后跟向量平行所得,以逆时针旋转为正方向,则

由几何关系分析可知:任意时刻
         
 

定义为B点的速度,同理定义β为X轴单位向量旋转β角度后跟向量平行所得,以逆时针旋转为正方向,因为任意时刻 则,已知B点角速度为ω1,由几何关系分析可知:任意时刻

 

定义 为A点的速度,同理定义Ф为X轴单位向量旋转Ф角度后跟向量 平行所得,同理

 

 
由于点M(x,y)为线段AB中点,所以m点速度为

Vm = (V1+ V2)/2 = ( -(ω1+ω2)*r* sinθ), (ω1+ω2)*r* cosθ)

假定在时刻t,左轮角速度为ωt1,右轮角速度为ωt2,经过时间Δt,当Δt→0时有:

因为任意时刻,两轮子的速度方向平行于同一直线,所以,M点线速度

左轮的运动弧长

右轮的运动弧长

由几何学分析我们可以得到,向量AB 与X轴单位向量的夹角θ的增量

由几何学分析已知,向量 与X轴单位向量的夹角θ的增量与航向角的增量任意时刻都相等相等,所以,t时刻,M点角速度为

所以,时刻t,M点运动半径

                     

假定M点初始坐标为(a,b),初始状态下X轴单位向量旋转β角度后与 平行,则

 

M点轨迹参数方程为

 

 

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值