73. Set Matrix Zeroes

这里写图片描述
题目大意:
给出一个m * n的矩阵,如果矩阵中的某个元素为0,则将该元素所在的整行和整列设为0,要求空间复杂度为O(1),举个栗子:

 [0,1,2,3]      [0,0,0,0]
 [4,5,6,7]  ->  [0,5,6,7]
 [8,9,1,2]      [0,9,1,2]    

思路:
如果放宽对空间复杂度的限制,可以将原始矩阵复制一份,一边遍历原始矩阵,一边修改复制矩阵,这样的空间复杂度为O(mn)。

再优化一下,开辟一个大小为m的列表和一段大小为n的列表,m是矩阵的行数, n是矩阵的列数。如果(i,j)位置为0,将 i 保存到大小为m的列表中(m列表),将 j 保存到大小为n的列表中(n列表)。这样,相当于添加了标志位,m列表中标志哪一行要整行变为0,n列表中标志哪一列要整列变为0。这种方法的空间复杂度为O(m+n)。
这里写图片描述

当然,还可以再优化一下,不必额外开辟m + n的空间,充分利用矩阵的空间,将第一列和第一行作为m列表和n列表。

Python代码如下:

class Solution(object):
    def setZeroes(self, matrix):
        """
        :type matrix: List[List[int]]
        :rtype: void Do not return anything, modify matrix in-place instead.
        """
        first_row = False
        first_col = False
        rows = len(matrix)
        cols = len(matrix[0])
        
        # 遍历第一行
        for i in range(cols):
            if matrix[0][i] == 0:
                first_row = True
                break
               
        # 遍历第一列
        for i in range(rows):
            if matrix[i][0] == 0:
                first_col = True
                break
        
        for i in range(1, rows):
            for j in range(1, cols):
                if matrix[i][j] == 0:
                    matrix[i][0] = 0
                    matrix[0][j] = 0
        
        for i in range(1, rows):
            for j in range(1, cols):
                if matrix[i][0] == 0 or matrix[0][j] == 0:
                    matrix[i][j] = 0
        
        if first_row:
            for i in range(cols):
                matrix[0][i] = 0
                    
        if first_col:
            for i in range(rows):
                matrix[i][0] = 0
                
# matrix = [
#     [0,2,3,4],
#     [5,6,7,0],
#     [9,10,11,12]    
# ]

# matrix= [
#     [0,1,1,5],
#     [4,3,1,4],
#     [0,1,1,4],
#     [1,2,1,3],
#     [0,1,1,1]
# ]

# matrix = [
#     [1],
#     [0]
# ]


matrix = [
    [-4, -21, 6, -7, 0],
    [-8, 6,  -8, -6, 0],
    [21, 2,  -9, -6,-10]
]

Solution().setZeroes(matrix)
# print()
for i in range(len(matrix)):
    for j in range(len(matrix[0])):
        print(matrix[i][j],' ', end = '')
    print()
import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ["SimHei"] # 单使用会使负号显示错误 plt.rcParams['axes.unicode_minus'] = False # 把负号正常显示 # 读取北京房价数据 path = 'data.txt' data = pd.read_csv(path, header=None, names=['房子面积', '房子价格']) print(data.head(10)) print(data.describe()) # 绘制散点图 data.plot(kind='scatter', x='房子面积', y='房子价格') plt.show() def computeCost(X, y, theta): inner = np.power(((X * theta.T) - y), 2) return np.sum(inner) / (2 * len(X)) data.insert(0, 'Ones', 1) cols = data.shape[1] X = data.iloc[:,0:cols-1]#X是所有行,去掉最后一列 y = data.iloc[:,cols-1:cols]#X是所有行,最后一列 print(X.head()) print(y.head()) X = np.matrix(X.values) y = np.matrix(y.values) theta = np.matrix(np.array([0,0])) print(theta) print(X.shape, theta.shape, y.shape) def gradientDescent(X, y, theta, alpha, iters): temp = np.matrix(np.zeros(theta.shape)) parameters = int(theta.ravel().shape[1]) cost = np.zeros(iters) for i in range(iters): error = (X * theta.T) - y for j in range(parameters): term = np.multiply(error, X[:, j]) temp[0, j] = theta[0, j] - ((alpha / len(X)) * np.sum(term)) theta = temp cost[i] = computeCost(X, y, theta) return theta, cost alpha = 0.01 iters = 1000 g, cost = gradientDescent(X, y, theta, alpha, iters) print(g) print(computeCost(X, y, g)) x = np.linspace(data.Population.min(), data.Population.max(), 100) f = g[0, 0] + (g[0, 1] * x) fig, ax = plt.subplots(figsize=(12,8)) ax.plot(x, f, 'r', label='Prediction') ax.scatter(data.Population, data.Profit, label='Traning Data') ax.legend(loc=2) ax.set_xlabel('房子面积') ax.set_ylabel('房子价格') ax.set_title('北京房价拟合曲线图') plt.show()
最新发布
06-04
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值