给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
示例 2:
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
示例 3:
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
思路:
- 第一眼看是个np问题,其实自己仔细分析下规律发现,只要有一个元素比上一个元素大而后一个元素比当前元素小,那么它是获利的,只要获利我们就算一次完整的交易。
- 这里我们采用双游标法,游标start记录购买日期,而游标end用来判断卖出日期,问题就变得简单。
public int maxProfit(int[] prices) {
int maxProfit = 0;
int len = prices.length;
if(len<=0){
return 0;
}
int start = 0,end = -1; //使用双游标,一个用于标记起始天数,一个用于遍历下一次开始
for(int i=0;i<len;i++){
if(i == 0){
start=end = 0;
}else{
if(prices[i]<prices[end]){//如果当前值小于前一个end标记值,说明之前获利
maxProfit += (prices[end]-prices[start]);
start = end = i;
}else{
end = i;
}
}
}
if(end>start){//如果股票一直涨那么最后结算
maxProfit += prices[end]-prices[start];
}
return maxProfit;
}
前一种方法其实把问题稍微复杂化
这个解法与题目示例稍微有点不服,它这个理解:只要我有利可图那么我就得利先,然后再看后续能不能再买。而上一种方法是,我先攒着,获利最大的时候我再出掉。
public int maxProfit1(int[] prices){
int maxProfit = 0;
for(int i = 1;i<prices.length;i++){
if(prices[i]-prices[i-1]>0){
maxProfit += prices[i]-prices[i-1];
}
}
return maxProfit;
}