题目大意
一个w*h(1<=w,h<=10000)的网格里面有n(0<=n<=100)棵树,要求找出一个最大的空正方形。
样例
input
1
7 10 7
3 2
4 2
7 0
7 3
4 5
2 4
1 7
output
4 3 4
解释
这个最大的空正方形坐标为4 3,长度为4。
思路
要求的是正方形,其实就是矩形,最后判断的时候取长和宽的较小值即可。
数的数量最多只有100,所以可以使用有技巧的暴力。
- 对所有的点按照y值进行排序,记作dy。
- 对所有的点按照x值进行排序,记作node。
- miny和maxy为的纵坐标的区间值,则目前区间的纵坐标区域为[miny,maxy]。
- 对所有的点按照x的大小进行一个排序。判断输入的所有的点的y值在不在区间[miny,maxy]内。
- 比较判断:miny作为空正方形的左下角点的y坐标,node[k].x作为空正方形的左下角的x坐标。
总体复杂度最多位O(n^3),n为100。
代码
#include<cstdio>
#include<map>
#include<queue>
#include<cstring>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<vector>
#include<stdlib.h>
#include <math.h>
#include <stack>
using namespace std;
const int maxn = 105;
struct Node
{
int x,y;
} node[maxn];
int dy[maxn];
bool cmp(Node a,Node b)
{
if (a.x == b.x) return a.y<b.y;
else return a.x < b.x;
}
int main()
{
int CaseNum;
scanf("%d",&CaseNum);
while(CaseNum--)
{
int W,H,N;
scanf("%d%d%d",&N,&W,&H);
for(int i=0; i<N; i++) scanf("%d%d",&node[i].x,&node[i].y),dy[i]=node[i].y;
dy[N] = H;
dy[N+1] = 0;
sort(dy,dy+N+2);
sort(node,node+N,cmp);
int uni_y = unique(dy,dy+N+2) - dy;
int ansx,ansy,ans=0;
for(int i=0; i<uni_y; i++)
{
for(int j=i+1; j<uni_y; j++)
{
int maxy = dy[j];
int miny = dy[i];
int hh = maxy - miny;//高
int ww = 0;//宽
int tmp = 0;//左边界
for(int k = 0; k < N; k++)
{
if(node[k].y >= maxy || node[k].y <= miny ) continue;
ww = node[k].x - tmp;
if(ans<min(ww,hh))
{
ans = min(ww,hh);
ansx = tmp;
ansy = miny;
}
tmp = node[k].x;
}
ww = W - tmp;//最右的边也计算一下
if(ans<min(ww,hh))
{
ans = min(ww,hh);
ansx = tmp;
ansy = miny;
}
}
}
printf("%d %d %d\n",ansx,ansy,ans);
if(CaseNum) printf("\n");
}
}
/*
Sample Input
2
7 10 7
3 2
4 2
7 0
7 3
4 5
2 4
1 7
5 6 6
1 1
2 2
3 3
4 4
5 5
Sample Output
4 3 4
2 0 3
*/
Hit
在对y值进行排序的时候,可以将0和H这两个值加进y中,这个时候y的区间就会完整,会考虑到0和H,而不是只有点的纵坐标了。
只要暴力得当,使用有技巧的暴力还是可以的。