201604-1-折点计算

问题描述

  给定n个整数表示一个商店连续n天的销售量。如果某天之前销售量在增长,而后一天销售量减少,则称这一天为折点,反过来如果之前销售量减少而后一天销售量增长,也称这一天为折点。其他的天都不是折点。如下图中,第3天和第6天是折点。
  
  给定n个整数a1, a2, …, an表示销售量,请计算出这些天总共有多少个折点。
  为了减少歧义,我们给定的数据保证:在这n天中相邻两天的销售量总是不同的,即ai-1≠ai。注意,如果两天不相邻,销售量可能相同。

输入格式

  输入的第一行包含一个整数n。
  第二行包含n个整数,用空格分隔,分别表示a1, a2, …, an

输出格式

  输出一个整数,表示折点出现的数量。

样例输入

7
5 4 1 2 3 6 4

样例输出

2

评测用例规模与约定

  所有评测用例满足:1 ≤ n ≤ 1000,每天的销售量是不超过10000的非负整数。

解答代码

#include<iostream>
#include<string>
using namespace std;

int main()
{
    int i,j,n;
    int flag=0;//-1 表示减少,1 表示增加
    int data1,data2;
    int count=0;
    cin>>n;
    for(i=0;i<n;i++)
    {
      if(i==0)
        cin>>data1;
      else if(i== 1)
      {
        cin>>data2;
        if(data2>data1)
          flag=1;
        else if(data2<data1)
          flag= -1;    
        data1=data2;
      }
      else
      {
          cin>>data2;
          if(data2>data1 && flag==1)
            data1=data2;
          if(data2>data1 && flag==-1)
          {
              flag=1;
              data1=data2;
              count++;
          }
          if(data2<data1 && flag==-1)
          {
              data1=data2;
          }
          if(data2<data1 && flag==1)
          {
              flag=-1;
              data1=data2;
              count++;
          }
      }
    } 
    cout<<count<<endl;
    //system("pause");
    return 0;
} 

1. 顺序存储结构中数据中数据元素之间逻辑关系是由( )表示的,链接存储结构中的数据元素之间的逻辑关系是由( )表示的。 A.线性结构 B.非线性结构 C.存储位置 D.指针 2. 线性表是( )。 A.一个有限序列,可以为空 B. 一个有限序列,不能为空 C. 一个无限序列,可以为空 D. 一个无限序列,不能为空 3. 已知一维数组A采用顺序存储结构,每个元素占用4个存储单元,第9个元素的地址为144,则第一个元素的地址是( )。 A. 108 B. 180 C. 176 D. 112 4. 在单链表中删除指针p所指结点的后继结点,则执行( )。 A. p->next= p->next->next B. p->next= p->next C. p= p->next->next D. p= p->next; p->next= p->next->next 5. 若某链表最常用的操作是在最后一个结点之后插入一个结点删除最后一个结点,则采用( )存储方式最节省时间。 A. 单链表 B. 双链表 C. 带头结点的双循环链表 D. 单循环链表 6.二维数组A[7][8]以列序为主序的存储, 计算数组元素A[5][3] 的一维存储空间下标 k=( )。 A. 38 B. 43 C. 26 D. 29 二、完成下列填空题(每空3分,共9分)。 1.在顺序表L中第i个位置上插入一个新的元素e: Status ListInsert_Sq(SqList &L , int i , ET e){ if ( iL.length+1) return ERROR; if(L.length >= L.listsize){ p=(ET*)realloc(L.elem,(L.listsize+10)*sizeof(ET)); if (p==NULL) exit(OVERFLOW); L.elem=p; } for( j=L.length ; j>=i ; --j ) L.elem[j]=L.elem[j-1] ; L.elem[j]=e ; ++L.length ; return OK; } 2. 删除双向链表中p所指向的节点算法: status delete(DuLinkList L, DuLinkList p) { if (p= =L) return ERROR; else { p->prior->next=p->next; p->next->prior=p->prior ; } free(p); return OK; } 三、编程题(共27分)。 1. (共12分)用顺序表表示集合,设计算法实现集合的求差集运算,要求不另外开辟空间。 顺序表的存储结构定义如下: #define Maxsize 100 typedef struct { ElemType data[MaxSize]; // ElemType表示不确定的数据类型 int length; // length表示线性表的长度 }SqList; 将如下函数,伪码补充完整(8分),代码前先用文字描述自己的算法思想(4分)。 文字描述算法:略(4分) void Difference(SqList A, SqList B) {//参考代码如下如下(8分) for (i=0;i<A.length;i++) for(j=0;j<B.length;j++) if(A.data[i]==B.data[j]) { A.data[i]=’#’; break; } for (k=0,i=0;inext == L) return; p = L; while (p->next != L)   { if (p->next->data != e) P = p->next; else { q = p->next;p->next = q->next; free(q);} } } 时间复杂度分析:(2分) 时间复杂度为O(n)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值