最小生成树

书上的算法总是精妙无比,毕竟都是前辈先贤们思考的结晶,光是想明白这些现成的算法都要耗费我好大的精力。

最小生成树的两个经典算法:普利姆算法和克鲁斯卡尔算法都不简单。单纯看书显然是看不懂的,严蔚敏的书上那些晦涩的伪代码……无语了!

所以从网上找的现成代码,设断点,单步跟踪运行,竟然搞懂了!花了三天时间。看来这也不失为学习算法的一种方法。

可惜并不是所有时候都能找到现成代码供我研究。


#include<stdio.h>
#include<stdlib.h>
#include<iostream.h>

#define MAX_VERTEX_NUM 20
#define OK 1
#define ERROR 0
#define MAX 1000

typedef struct Arcell
{
	double adj;
}Arcell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];

typedef struct
{
	char vexs[MAX_VERTEX_NUM]; //节点数组
	AdjMatrix arcs; //邻接矩阵
	int vexnum,arcnum; //图的当前节点数和弧数
}MGraph;

typedef struct Pnode //用于普利姆算法
{
	char adjvex; //节点
	double lowcost; //权值
}Pnode,Closedge[MAX_VERTEX_NUM]; //记录顶点集U到V-U的代价最小的边的辅助数组定义

typedef struct Knode //用于克鲁斯卡尔算法中存储一条边及其对应的2个节点
{
	char ch1; //节点1
	char ch2; //节点2
	double value;//权值
}Knode,Dgevalue[MAX_VERTEX_NUM];

//-----------------------------------------------------------------------------------

int CreateUDG(MGraph & G,Dgevalue & dgevalue);
int LocateVex(MGraph G,char ch);
int Minimum(MGraph G,Closedge closedge);
void MiniSpanTree_PRIM(MGraph G,char u);
void Sortdge(Dgevalue & dgevalue,MGraph G);

//-----------------------------------------------------------------------------------

int CreateUDG(MGraph & G,Dgevalue & dgevalue) //构造无向加权图的邻接矩阵
{
	int i,j,k;
	cout<<"请输入图中节点个数和边/弧的条数:";
	cin>>G.vexnum>>G.arcnum;
	cout<<"请输入节点:";
	for(i=0;i<G.vexnum;++i)
		cin>>G.vexs[i];
	for(i=0;i<G.vexnum;++i)//初始化数组
	{
		for(j=0;j<G.vexnum;++j)
		{
			G.arcs[i][j].adj=MAX;
		}
	}
	cout<<"请输入一条边依附的定点及边的权值:"<<endl;
	for(k=0;k<G.arcnum;++k)
	{
		cin >> dgevalue[k].ch1 >> dgevalue[k].ch2 >> dgevalue[k].value;
		i = LocateVex(G,dgevalue[k].ch1);
		j = LocateVex(G,dgevalue[k].ch2);
		G.arcs[i][j].adj = dgevalue[k].value;
		G.arcs[j][i].adj = G.arcs[i][j].adj;
	}
	return OK;
}
int LocateVex(MGraph G,char ch) //确定节点ch在图G.vexs中的位置
{
	int a ;
	for(int i=0; i<G.vexnum; i++)
	{
		if(G.vexs[i] == ch)
			a=i;
	}
	return a;
}
void MiniSpanTree_PRIM(MGraph G,char u)//普利姆算法求最小生成树
{
	int i,j,k;
	Closedge closedge;
	k = LocateVex(G,u);
	for(j=0; j<G.vexnum; j++)
	{
		if(j != k)
		{
			closedge[j].adjvex = u;
			closedge[j].lowcost = G.arcs[k][j].adj;
		}
	}
	closedge[k].lowcost = 0;
	for(i=1; i<G.vexnum; i++)
	{
		k = Minimum(G,closedge);
		cout<<"("<<closedge[k].adjvex<<","<<G.vexs[k]<<","<<closedge[k].lowcost<<")"<<endl;
		closedge[k].lowcost = 0;
		for(j=0; j<G.vexnum; ++j)
		{
			if(G.arcs[k][j].adj < closedge[j].lowcost)
			{
				closedge[j].adjvex = G.vexs[k];
				closedge[j].lowcost= G.arcs[k][j].adj;
			}
		}
	}
}
int Minimum(MGraph G,Closedge closedge) //求closedge中权值最小的边,并返回其顶点在vexs中的位置
{
	int i,j;
	double k = 1000;
	for(i=0; i<G.vexnum; i++)
	{
		if(closedge[i].lowcost != 0 && closedge[i].lowcost < k)
		{
			k = closedge[i].lowcost;
			j = i;
		}
	}
	return j;
}
void MiniSpanTree_KRSL(MGraph G,Dgevalue & dgevalue)//克鲁斯卡尔算法求最小生成树
{
	int p1,p2,i,j;
	int bj[MAX_VERTEX_NUM]; //标记数组
	for(i=0; i<G.vexnum; i++) //标记数组初始化
		bj[i]=i;
	Sortdge(dgevalue,G);//将所有权值按从小到大排序
	for(i=0; i<G.arcnum; i++)
	{
		p1 = bj[LocateVex(G,dgevalue[i].ch1)];
		p2 = bj[LocateVex(G,dgevalue[i].ch2)];
		if(p1 != p2)
		{
			cout<<"("<<dgevalue[i].ch1<<","<<dgevalue[i].ch2<<","<<dgevalue[i].value<<")"<<endl;
			for(j=0; j<G.vexnum; j++)
			{
				if(bj[j] == p2)
					bj[j] = p1;
			}
		}
	}
}
void Sortdge(Dgevalue & dgevalue,MGraph G)//对dgevalue中各元素按权值按从小到大排序
{
	int i,j;
	double temp;
	char ch1,ch2;
	for(i=0; i<G.arcnum; i++)
	{
		for(j=i; j<G.arcnum; j++)
		{
			if(dgevalue[i].value > dgevalue[j].value)
			{
				temp = dgevalue[i].value;
				dgevalue[i].value = dgevalue[j].value;
				dgevalue[j].value = temp;
				ch1 = dgevalue[i].ch1;
				dgevalue[i].ch1 = dgevalue[j].ch1;
				dgevalue[j].ch1 = ch1;
				ch2 = dgevalue[i].ch2;
				dgevalue[i].ch2 = dgevalue[j].ch2;
				dgevalue[j].ch2 = ch2;
			}
		}
	}
}
void main()
{
	int i,j;
	MGraph G;
	char u;
	Dgevalue dgevalue;
	CreateUDG(G,dgevalue);
	cout<<"图的邻接矩阵为:"<<endl;
	for(i=0; i<G.vexnum; i++)
	{
		for(j=0; j<G.vexnum; j++)
			cout << G.arcs[i][j].adj<<" ";
		cout<<endl;
	}
	cout<<"=============普利姆算法===============\n";
	cout<<"请输入起始点:";
	cin>>u;
	cout<<"构成最小代价生成树的边集为:\n";
	MiniSpanTree_PRIM(G,u);
	cout<<"============克鲁斯科尔算法=============\n";
	cout<<"构成最小代价生成树的边集为:\n";
	MiniSpanTree_KRSL(G,dgevalue);
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值