目标识别之贝叶斯分类器

本文深入探讨了《数字图像处理》第三版564页中关于最佳统计分类器的内容,重点讲解了条件评价损失概念及贝叶斯分类器的思想。通过引入损失函数,贝叶斯分类器能够更有效地调整分类结果,确保在错误分类成本较高的情况下,仍能做出最优判断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

此部分内容为看《数字图像处理》第三版564页的最佳统计分类器的笔记

1、条件评价损失概念

2.贝叶斯分类器思想

对于一个新的模式变量x,带入12.2-9中得到该变量属于某个分类时的平均损失,从中找出平均损失最小的分类,那么就表明x属于这个分类,可以看到贝叶斯分类器可以利用预先知道的知识(损失函数)进行更好的分类,若某项被错误分类到另一类的损失函数损失较大,那么会增大rj的值,从而调节最终的结果。

3.求取过程

https://blog.csdn.net/ylin01234/article/details/81162924

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值