Visualization for Changes in Relationships between Historical Figures in Chronicles

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010487100/article/details/79945410
来源:Dai-Nihon Shiryo Database  9-17世纪,按年代排列的数据库

数据库特点:每条记录代表一个事件,包括事件的时间,人物和对应的官衔,有关地点,时间的关键词,共230k条记录

该可视化工具的特点:能够根据年限,主题名来查看人物之间的关系。其中关键词是经过聚类的。以力导向图的形式描绘人物之间的关系,节点表示人名,连线表示关系的紧密程度,连线颜色表示关系的性质。

提取过程如下:


一,提取人物关系网络

计算人物独立性的公式:


p与p'的独立意思是,某年的记录中p和p'同时出现的次数/p单独出现的次数,

如果pdy(p,p')>=a ,pdy(p',p)>=a (a=1)那么是相关的,p和p'双向连接。

如果pdy(p,p')>=b ,pdy(p',p)<=c (b=c=0.8)那么p到p'单向连接。

节点大小的计算公式:

意思是所有依附于p的节点的与p的独立性之和。

节点的颜色

• #In Link > #Out Link : dark purple
• #Out Link > #In Link : light purple

• #In Link = #Out Link : gray

边界线的长度公式为: pd y (p,p ′ ) − pd y (p ′ ,p)

意思是一个的独立性越强那么线越短,因为p独立性越强pd y (p,p ′ )值越小。

二,提取关系的属性

通过提取两个人之间的关键词作为标签,并对标签附加相应的颜色。因为标签过多,仅仅1560-1580之间就有3034个标签,因此将关键词进行聚类,大部分关键为战争和和平。最后将关键词总结为70个,使用最高频率的关键词作为标签。

聚类结果如下:


提取聚类之后的结果如下:


三,可视化

比较德川家康和织田信仁之间的关系,随着关键词和时间的变化的例子


织田信仁的网络图事例:


可视化人物之间关系随着时间变化而变化的规律,红色代表战争,蓝色代表友谊,灰色代表其他,白色代表未知。


未来展望:时间比较短,只有20年

阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页