Problem Description
在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的t-shirt。但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗?
Input
输入包括多组数据。每组数据第一行是两个整数N、M(N<=100,M<=10000),N表示成都的大街上有几个路口,标号为1的路口是商店所在地,标号为N的路口是赛场所在地,M则表示在成都有几条路。N=M=0表示输入结束。接下来M行,每行包括3个整数A,B,C(1<=A,B<=N,1<=C<=1000),表示在路口A与路口B之间有一条路,我们的工作人员需要C分钟的时间走过这条路。
输入保证至少存在1条商店到赛场的路线。
输入保证至少存在1条商店到赛场的路线。
Output
对于每组输入,输出一行,表示工作人员从商店走到赛场的最短时间
Sample Input
2 1 1 2 3 3 3 1 2 5 2 3 5 3 1 2 0 0
Sample Output
3 2
题意不用我说了,中文
然后做法也不用我说了吧,dij算法...
收获:加上昨晚复习的最小生成树问题,终于弄通了最小生成树问题 与 最短路问题的区别,也懂了Prim算法和Dij算法的异同~
AC代码:
#include<stdio.h>
#include<string.h>
int n, m;
int map[111][111];
int vis[111];
int dij(int s) {
int i, j;
int dis[111];
for(int i = 0; i <= n; i++)
dis[i] = 0x3fffffff;
dis[s] = 0;
for(i = 1; i <= n; i++) {
int Min = 0x3fffffff;
int pos;
for(j = 1; j <= n; j++) {
if(!vis[j] && dis[j] < Min) {
Min = dis[j];
pos = j;
}
}
vis[pos] = 1;
for(j = 1; j <= n; j++) {
if(!vis[j] && map[pos][j] + dis[pos] < dis[j])
dis[j] = map[pos][j] + dis[pos];
}
}
return dis[n];
}
int main() {
while(scanf("%d %d", &n, &m) != EOF && n && m) {
memset(map, 0x3f, sizeof(map));
memset(vis, 0, sizeof(vis));
int a, b, d;
for(int i = 0; i < m; i++) {
scanf("%d %d %d", &a, &b, &d);
if(map[a][b] > d) {
map[a][b] = d;
map[b][a] = d;
}
}
printf("%d\n", dij(1));
}
return 0;
}