#HDU 3790 最短路问题 (两个权值的计算)链式前向星+dijktra

思路 :很基础的题目,如果把费用去掉就是妥妥的dijkstra模板题,现在多了一个条件,但还是求最短路,只是在可以保证最短路的情况下,费用尽量小,很好理解,但是要细心。

这种题居然也能WA两次。。

下面是AC代码 :

#include<iostream>
#include<cstring>
#include<queue>
#include<cstdio>
using namespace std;
const int maxn = 1e5 + 5;
const int INF = 0x3f3f3f3f;

struct node
{
    int v, w, val, next;
}e[maxn];
struct edge
{
    int id, w, val;
    operator < (const edge &oth) const
    {
        return w > oth.w;
    }
}mid;
int head[maxn], n, m, cnt;
int dis[maxn], val[maxn];
priority_queue <edge> q;
void init() {
    memset(dis, INF, sizeof(dis));
    memset(val, INF, sizeof(val));
    memset(head, -1, sizeof(head));
    memset(e, 0, sizeof(e));
    cnt = 0;
}
void add (int from, int to, int dis, int pi) {
    e[++cnt].v = to;
    e[cnt].w = dis;
    e[cnt].val = pi;
    e[cnt].next = head[from];
    head[from] = cnt;
}
void dijktra(int u) {
    dis[u] = 0;
    val[u] = 0;
    q.push({u, 0, 0});
    while (!q.empty()) {
        mid = q.top();
        q.pop();
        int ans = mid.id;
        if (mid.w != dis[ans]) continue;
        for (int i = head[ans]; i != -1; i = e[i].next) {
            if (dis[e[i].v] > dis[ans] + e[i].w) {
                dis[e[i].v] = dis[ans] + e[i].w;
                val[e[i].v] = val[ans] + e[i].val;
                q.push({e[i].v, dis[e[i].v], val[e[i].val]});
            }
            else if (dis[e[i].v] == dis[ans] + e[i].w && val[e[i].v] > val[ans] + e[i].val) {
                val[e[i].v] = val[ans] + e[i].val;
                dis[e[i].v] = dis[ans] + e[i].w;
                q.push({e[i].v, dis[e[i].v], val[e[i].val]});
            }
        }
    }
}

int main()
{
    while (scanf("%d%d", &n, &m) && n + m) {
        init();
        for (int i = 0; i < m; i++) {
            int ui, vi, wi, pi;
            scanf("%d%d%d%d", &ui, &vi, &wi, &pi);
            add (ui, vi, wi, pi);
            add (vi, ui, wi, pi);
        }
        int ai, bi;
        scanf("%d%d", &ai, &bi);
        dijktra(ai);
        cout << dis[bi] << " " << val[bi] << endl;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值