在现代数据架构中,数据仓库是一个至关重要的组成部分。数据仓库的设计通常采用分层架构,旨在通过不同的数据处理层次来实现数据的高效管理和分析。在本文中,我们将深入探讨数据仓库的四个关键层次:ODS(操作数据存储)、DWD(数据仓库详细层)、DWS(数据仓库汇总层)和ADS(应用数据存储)。我们将从数据层次化建模和业务需求的角度,逐一解析这些层次的功能、设计理念及实际应用。
1. ODS(Operational Data Store,操作数据存储)
定义与作用
ODS 层是数据仓库架构的第一个层次,主要负责存储原始的操作数据。这些数据通常来自企业的各个业务系统,如CRM、ERP等,反映了企业日常运营的实时状态。ODS 层的数据更新频繁,通常支持实时或近实时的查询需求。
数据特点
原始数据:ODS 层的数据未经过多大的处理,通常保存为业务系统中的原始数据。
高实时性:由于直接从业务系统中提取,数据通常是最新的。
数据粒度较大:ODS 层中的数据通常是事务级别的,每一条记录都代表一个具体的操作事件。
业务理解
从业务角度来看,ODS 层是整个数据仓库中的“动态源泉”。它保存了企业运营中最详细的、最真实的数据,是所有进一步数据处理的基础。举个例子,销售系统中的每一笔订单信息都会存储在 ODS 层中,供后续层次的数据清洗和分析使用。
2. DWD(Data Warehouse Detail,数据仓库详细层)
定义与作用
DWD 层是数据仓库中承接 ODS 层的关键层次,负责对来自 ODS